Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 713-717     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of high magntic fields on the behavior of primary Sb phase in Sb-4.8 wt.%Mn hypoeutectic alloy
东北大学材料电磁过程研究教育部重点实验室
Cite this article: 

. Effects of high magntic fields on the behavior of primary Sb phase in Sb-4.8 wt.%Mn hypoeutectic alloy. Acta Metall Sin, 2008, 44(6): 713-717 .

Download:  PDF(2154KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The changes of solidified structures of Sb-4.8wt.%Mn hypoeutectic alloy under uniform and gradient magnetic fields were examined. It was found that the primary Sb phase in the alloy exhibited a change in growth behavior from a faced to non-faced one or from a non-faced to faced one. The faced/non-faced or non-faced/faced transition was found to be dependent on cooling rate and magnetic flux density. It was also found that the size of the Sb particles increased at first and then decreased with increasing magnetic flux density under uniform magnetic fields. Furthermore, the size of the Sb particles at a positive magnetic field gradient was found to be smaller than one at a negative magnetic field gradient when imposed upon magnetic field gradients with small absolute values of the product of the magnetic field flux density and its gradient. Thermal analyses of specimens indicated that the application of a high magnetic field decreased the undercooling of the primary arrest and the growth velocity of the primary Sb phase.The experimental results show that high magnetic fields can be used to control the morphology of the solidified structure and the size of the primary Sb phase in Mn-Sb hypoeutectic alloy.
Key words:  metal solidification      magnetic fields      convection      Sb-Mn alloy      
Received:  14 September 2007     
ZTFLH:  TG111.4  
  TG115.21  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/713

[1]Uhlmann D R,Seward T P,Chalmers B.Trans Metall Soc AIME,1966;236:527
[2]Vires C,Perry C.Int J Heat Mass Transfer,1987;30:479
[3]Evans J W,Seybert C D,Leslie F,Jones W K.J Appl Phys,2000;88:4347
[4]Wang Q,Wang C J,Pang X J,He J C.Chin J Mater Res, 2004;18:568 (王强,王春江,庞雪君,赫冀成.材料研究学报,2004;18:568)
[5]Wang Q,Liu T,Gao A,Zhang C,Wang C J,He J C.Scr Mater,2007;56:1087
[6]Liu T,Wang Q,Gac A,Zhang C,Wang C J,He J C.Scr Mater,2007;57:992
[7]Li X,Ren Z M,Gao Y,Deng K,Zhuang Y Q,Xu K D. Chin J Nonferrous Met,2005;15:397 (李喜,任忠鸣,高云,邓康,壮云乾,徐匡迪.中国有色金属学报,2005;15:397)
[8]Wang W L,Dai F P,Wei B B.Sci China,2007;50G:472
[9]Ruan Y,Wei B B.Sci China,2007;50G:563
[10]Hu H Q.Solidification Principle.Beijing:China Machine Press,2000:96,98 (胡汉起.金属凝固原理.北京:机械工业出版社,2000:96,98)
[11]Pan Y,Sun G X.Scr Mater,1999;41:803
[12]Cui Z Q.Metallurgy and Heat Treatment.Beijing:China Machine Press,2000:53 (崔忠圻.金属学与热处理.北京:机械工业出版社,2000:53)
[13]Baskar G,Nicholas Z.J Cryst Growth,2005;276:299
[14]Botton V,Lehmann P,Bolcato R,Moreau R,Haettel R. Int J Heat Mass Transfer,2001;44:3345
[15]Szekely J,Nakanishi K.Metall Trans,1975;6B:245
[16]Hideyuki Y,Itsuo O,Osamu K,Kazuyuki U,Kohji K. ISIJ Int,2003;43:942
[17]Moreau R J.Measurement and Control in Liquid Metal Processing.Dordrecht,Boston,Lancaster:Martinus Ni- jhoff Publishers,1987:21
[18]Cui J Z,Ba Q X,Ban C Y,Le Q C.Electromagnetic Met- allurgy of Light-Alloy.Shenyang:Northeastern University Press,2005:102 (崔建忠,巴启先,班春燕,乐启炽.轻合金电磁冶金.沈阳:东北大学出版社,2005:102)
[19]Takamichi I,Roderick I L G(eds.),Xian A P,Wang L W (trans.).The Physical Properties of Liquid Metals.Bei- jing:Science Press,2006:73 (Tskamichi I,Roderick I L G著,冼爱平,王连文译.液态金属的物理性能.北京:科学出版社,2006:73)
[1] Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. 金属学报, 2018, 54(10): 1428-1434.
[2] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[3] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[4] WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi. PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION[J]. 金属学报, 2013, 49(7): 822-830.
[5] XUAN Weidong, REN Zhongming, LI Chuanjun, REN Weili, CHEN Chao, YU Zhan. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G WITH DIFFERENT SIZES[J]. 金属学报, 2012, 48(5): 629-635.
[6] SHEN Yu REN Zhongming LI Xi, REN Weili. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED Al-40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2011, 47(4): 417-422.
[7] LUO Liangshun ZHANG Yumin SU Yanqing WANG Xin GUO Jingjie FU Hengzhi . CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result
[J]. 金属学报, 2011, 47(3): 275-283.
[8] LUO Liangshun FU Hengzhi ZHANG Yumin LI Xinzhong SU Yanqing GUO Jingjie. CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
II. Theoretical Analysis
[J]. 金属学报, 2011, 47(3): 284-290.
[9] LU Shanping DONG Wenchao LI Dianzhong LI Yiyi. HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS[J]. 金属学报, 2010, 46(11): 1347-1364.
[10] DONG Jianwen REN Zhongming REN Weili LI Xi LI Xu. EFFECT OF HORIZONTAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY[J]. 金属学报, 2010, 46(1): 71-76.
[11] ZHAO Jiuzhou LI Haili ZHAO Lei. EFFECTS OF CONVECTIONS AND MOTIONS OF MINORITY PHASE DROPLETS ON SOLIDIFICATION OF MONOTECTIC ALLOYS[J]. 金属学报, 2009, 45(12): 1435-1440.
[12] ZHAO Jiuzhou LI Haili WANG Qingliang ZHAO Lei HE Jie. RAPID DIRECTIONAL SOLIDIFICATION OF Al-Pb ALLOY UNDER A STATIC MAGNETIC FIELD[J]. 金属学报, 2009, 45(11): 1344-1348.
[13] YANG Chaorong SUN Dongke PAN Shiyan DAI Ting ZHU Mingfang. CA--LBM MODEL FOR THE SIMULATION OF DENDRITIC GROWTH UNDER NATURAL CONVECTION[J]. 金属学报, 2009, 45(1): 43-50.
[14] . Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic[J]. 金属学报, 2008, 44(9): 1057-1062 .
[15] . Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape[J]. 金属学报, 2008, 44(2): 249-256 .
No Suggested Reading articles found!