Abstract The changes of solidified structures of Sb-4.8wt.%Mn hypoeutectic alloy under uniform and gradient magnetic fields were examined. It was found that the primary Sb phase in the alloy exhibited a change in growth behavior from a faced to non-faced one or from a non-faced to faced one. The faced/non-faced or non-faced/faced transition was found to be dependent on cooling rate and magnetic flux density. It was also found that the size of the Sb particles increased at first and then decreased with increasing magnetic flux density under uniform magnetic fields. Furthermore, the size of the Sb particles at a positive magnetic field gradient was found to be smaller than one at a negative magnetic field gradient when imposed upon magnetic field gradients with small absolute values of the product of the magnetic field flux density and its gradient. Thermal analyses of specimens indicated that the application of a high magnetic field decreased the undercooling of the primary arrest and the growth velocity of the primary Sb phase.The experimental results show that high magnetic fields can be used to control the morphology of the solidified structure and the size of the primary Sb phase in Mn-Sb hypoeutectic alloy.
[1]Uhlmann D R,Seward T P,Chalmers B.Trans Metall Soc AIME,1966;236:527 [2]Vires C,Perry C.Int J Heat Mass Transfer,1987;30:479 [3]Evans J W,Seybert C D,Leslie F,Jones W K.J Appl Phys,2000;88:4347 [4]Wang Q,Wang C J,Pang X J,He J C.Chin J Mater Res, 2004;18:568 (王强,王春江,庞雪君,赫冀成.材料研究学报,2004;18:568) [5]Wang Q,Liu T,Gao A,Zhang C,Wang C J,He J C.Scr Mater,2007;56:1087 [6]Liu T,Wang Q,Gac A,Zhang C,Wang C J,He J C.Scr Mater,2007;57:992 [7]Li X,Ren Z M,Gao Y,Deng K,Zhuang Y Q,Xu K D. Chin J Nonferrous Met,2005;15:397 (李喜,任忠鸣,高云,邓康,壮云乾,徐匡迪.中国有色金属学报,2005;15:397) [8]Wang W L,Dai F P,Wei B B.Sci China,2007;50G:472 [9]Ruan Y,Wei B B.Sci China,2007;50G:563 [10]Hu H Q.Solidification Principle.Beijing:China Machine Press,2000:96,98 (胡汉起.金属凝固原理.北京:机械工业出版社,2000:96,98) [11]Pan Y,Sun G X.Scr Mater,1999;41:803 [12]Cui Z Q.Metallurgy and Heat Treatment.Beijing:China Machine Press,2000:53 (崔忠圻.金属学与热处理.北京:机械工业出版社,2000:53) [13]Baskar G,Nicholas Z.J Cryst Growth,2005;276:299 [14]Botton V,Lehmann P,Bolcato R,Moreau R,Haettel R. Int J Heat Mass Transfer,2001;44:3345 [15]Szekely J,Nakanishi K.Metall Trans,1975;6B:245 [16]Hideyuki Y,Itsuo O,Osamu K,Kazuyuki U,Kohji K. ISIJ Int,2003;43:942 [17]Moreau R J.Measurement and Control in Liquid Metal Processing.Dordrecht,Boston,Lancaster:Martinus Ni- jhoff Publishers,1987:21 [18]Cui J Z,Ba Q X,Ban C Y,Le Q C.Electromagnetic Met- allurgy of Light-Alloy.Shenyang:Northeastern University Press,2005:102 (崔建忠,巴启先,班春燕,乐启炽.轻合金电磁冶金.沈阳:东北大学出版社,2005:102) [19]Takamichi I,Roderick I L G(eds.),Xian A P,Wang L W (trans.).The Physical Properties of Liquid Metals.Bei- jing:Science Press,2006:73 (Tskamichi I,Roderick I L G著,冼爱平,王连文译.液态金属的物理性能.北京:科学出版社,2006:73)