Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 237-242     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Analysis on Compressive Property of a New Type of Porous Magnesium
;;;
中科院金属研究所
Cite this article: 

;. Finite Element Analysis on Compressive Property of a New Type of Porous Magnesium. Acta Metall Sin, 2008, 44(2): 237-242 .

Download:  PDF(523KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The bone tissue engineering scaffolds must possess good mechanical properties. Porous magnesium(Mg) metals have obvious advantages as a new class of bone tissue engineering scaffold. In this paper, the finite element method (FEM) was applied to systematically analyze the influences of porosity, pore size and pores arrangement on the compressive behavior of a new type of porous magnesium with straight pores fabricated by laser perforation technique. The distortion law of porous magnesium in the process of compression was also discussed. The results indicated that FEM can be an important way to the evaluation of mechanical behavior of this new class of porous magnesium metals and the application in bone tissue engineering.
Key words:  porous magnesium      finite element analysis      compressive behavior      bone tissue engineering      
Received:  05 July 2007     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/237

[1]Tsuruga E,Takita H,Itoh H,Wskisaka Y,Kuboki Y.J Biochem,1997;121:317
[2]Clemow J T,Weinstein A M,Klawitter J J,Koeneman J, Anderson J.J Biomed Mater Res,1981;15:73
[3]Rezwana K,Chen Q Z,Blaker J J,Boccaccini A R.Bio- materials,2006;27:3413
[4]Staiger M P,Pietak A M,Huadmai J,Dins G.Biomate- rials,2006;27:1728
[5]Takadama H,Kim H M,Kokubo T,Nakamura T.J Biomed Mater Res,2001;57:441
[6]De Aza P N,Guitian F,Merlos A,Lora-Tamayo E,De Aza S.J Mater Sci-Mater Med,1996;7:399
[7]Kim S R,Lee J H,Kim Y T,Riu D H,Jung S J,Lee Y J,Chung S C,Kim Y H.Biomaterials,2003;24:1389
[8]Geng F,Tan L L,Zhang B C,Zheng F,Yang K.Mater Rev,2007;21(5):76 (耿芳,谭丽丽,张炳春,郑丰,杨何.材料导报,2007;21(5):76)
[9]Gibson L J,Ashby M F.Cellular Solids:Structure and Properties.2nd ed,UK:Cambridge University Press,1997
[10]Olurin O B,Fleck N A,Ashby M F.Scr Mater,2000;43: 983
[11]Ashby M F,Mehl Medalist R F.Metall Trans,1983;14A: 1755
[12]Nieh T G,Higashi K,Wadsworth J.Mater Sci Eng,2000; A283:105
[13]Miyoshi T,Itoh M,Mudai T,Kanahashi H,Kohzu H, Tanabe S,Higashi K.Scr Mater,1999;41:1055J
[1] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[4] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[5] FANG Chenfu CHEN Zhiwei XU Guoxiang HU Qingxian ZHOU Hangyu. STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING[J]. 金属学报, 2012, 48(11): 1299-1305.
[6] LANG Wenchang XIAO Jinquan GONG Jun SUN Chao HUNG Rongfang WEN Lishi. INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON CATHODE SPOTS MOVEMENT IN ARC ION PLATING[J]. 金属学报, 2010, 46(3): 372-379.
[7] CUI Hang CHEN Huaining CHEN Jing HUANG Chunling WU Changzhong. FEA OF EVALUATING MATERIAL YIELD STRENGTH AND STRAIN HARDENING EXPONENT USING A SPHERICAL INDENTATION[J]. 金属学报, 2009, 45(2): 189-194.
[8] Guo-Dong ZHANG. Finite Element Analysis of High Temperature Piping Creep for Considering the Effect of Inner Pressure and Welding Residual Stress[J]. 金属学报, 2008, 44(10): 1271-1276 .
[9] ;. SIMULATION OF STRESS IN REINFORCEMENTS AND STRESS-STRAIN CURVE OF SiC PARTICULATE Al-2618 MATRIX COMPOSITE[J]. 金属学报, 2007, 43(8): 863-867 .
[10] Li Rong. Finite-element modeling of pure magnesium swaging[J]. 金属学报, 2006, 42(4): 394-398 .
[11] JING Hongyang; HUO Lixing; ZHANG Yufeng(Tianjin Universitx; Tianjin 300072);TO YODA Masao; FUJITA Asako(Osaka University Japan 565) (Manuscript received 1 995-04-04). EFFECT OF YIELD RATIO ON FRACTURE TOUGHNESS FOR HIGH STRENGTH STEEL[J]. 金属学报, 1996, 32(3): 265-268.
[12] LI Huan;LI Jiabao;SUN Lizhi;WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1996-05-10;in revised form 1996-09-23). EFFECT OF LOW TEMPERATURE TREATMENT ON RESIDUAL STRESSES IN SiC_p/6061Al COMPOSITE[J]. 金属学报, 1996, 32(12): 1279-1284.
[13] HUANG Zheng;YAO Mei Institute of Physics; Academia Sinica; Beijing Harbin Institute of Technology Institute of Physics;Academia Sinica;Beijing 100080. MODEL OF CLEAVAGE CRACK PROPAGATION ACROSS BOUNDARY[J]. 金属学报, 1990, 26(1): 53-57.
No Suggested Reading articles found!