Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1171-1174     DOI:
Research Articles Current Issue | Archive | Adv Search |
Phase field simulation of lower volume fraction phase precipitation process
You Yuan;Mufu Yan;Yiqiang Chen
Cite this article: 

You Yuan; Mufu Yan; Yiqiang Chen. Phase field simulation of lower volume fraction phase precipitation process. Acta Metall Sin, 2008, 44(10): 1171-1174 .

Download:  PDF(1346KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The phase field model for predicting second-phase precipitation has been established based on constructing free energy function and considering the effect of grain boundary on the second-phase precipitation process. The numerical simulation of the second-phase precipitation inside the grain and on the grain boundary was carried out in the system with the solute volume fraction less than 2%. The results show that the proportion of second-phase precipitate inside grain and on the grain boundary depends on the item in which ηiand m are orientation variable and exponent relative to the second phase profile, respectively. The proportion of the precipitates inside the grain increases with decreasing m and the size of the second-phase precipatate depends on the gradient energy coefficient κcat the same phase field step. All the precipatates appear on the grain boundary under m=1 or a larger κc value condition.
Key words:  Lower volume fraction      Precipitation      Phase field simulation      
Received:  08 April 2008     
ZTFLH:  TG111.5  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1171

[1]Niendorf T,Maier H J,Canadinc D,Yapici G G,Karaman I.Scr Mater,2008;58:571
[2]Masdeu F,Pons J,Santamarta R,Cesari E,Dutkiewicz J. Mater Sci Eng,2008;A481-482:101
[3]Li D Y,Chen L Q.Acta Mater,1998;46:2573
[4]Ma X Q,Shi S Q,Woo C H,Chen L Q.Scr Mater,2002; 47:237
[5]Ma X Q,Shi S Q,Woo C H,Chen L Q.Mech Mater,2006; 38:3
[6]Moelans N,Blanpain B,Wollants P.Acta Mater,2005;53: 1771
[7]Moelans N,Blanpain B,Wollants P.Acta Mater,2006;54: 1175
[8]Moelans N,Blanpain B,Wollants P.Acta Mater,2007;55: 2173
[9]Fan D,Chen L Q.Acta Mater,1997;45:4145
[10]Fan D,Chen L Q,Chen S P,Voorhees P W.Compos Mater Sci,1998;9:329
[11]Fan D,Chen S P,Chen L Q,Voorhees P W.Acta Mater, 2002;50:1895
[12]Chen L Q,Yang W.Phys Rev,1994;50B:15752
[13]Chakrabarti A,Total R,Gunton J D.Phys Rev,1993; 47E:3025
[14]Allen S M,Cahn J W.Acta Metall,1979;27:1085
[15]Raabe D(ed.),Xiang J Z,Wu X H(trans.).Computa- tion Materials Science.Beijing:Chemical Industry Press, 2002:228 (Raabe D著.项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:228)
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[9] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[10] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[11] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[12] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[15] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
No Suggested Reading articles found!