Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1175-1182     DOI:
Research Articles Current Issue | Archive | Adv Search |
MODELING OF DENDRITIC STRUCTURE AND MICROSEGREGATION IN SOLIDIFICATION OF AL-RICH QUATERNARY ALLOYS
Dai Ting;Mingfang ZHU;Shuanglin CHEN;Weisheng CAO;Chunpyo HONG
东南大学材料科学与工程学院
Cite this article: 

Dai Ting; Mingfang ZHU; Shuanglin CHEN; Weisheng CAO; Chunpyo HONG. MODELING OF DENDRITIC STRUCTURE AND MICROSEGREGATION IN SOLIDIFICATION OF AL-RICH QUATERNARY ALLOYS. Acta Metall Sin, 2008, 44(10): 1175-1182 .

Download:  PDF(5080KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A two-dimensional (2-D) coupled cellular automaton (CA)-PanEngine model is developed for the simulation of dendritic growth and microsegregation formation in solidification of quaternary alloy system. In the model, the CA approach is employed to describe dendritic growth. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and local actual temperature, incorporating with the Gibbs–Thomson effect. Based on the local liquid compositions of three solutes, which are determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and equilibrium solid concentrations of three solutes at the solid/liquid (SL) interface are evaluated with the aid of a thermodynamic phase equilibrium calculation package PanEngine. To reduce computation time, a data tabulation coupling strategy between CA and PanEngine is adopted. The model is validated through the comparisons of simulated results with the predictions of the Scheil model and the equilibrium model for the evolution of solid fraction with the decrease of temperature and for the solid composition profiles as a function of solid fraction in an Al-4.5wt%Cu-0.5wt%Mg-1wt%Si alloy. It is demonstrated that the present model can be used to simulate the evolution of dendritic growth morphology and to quantitatively predict the microsegregation patterns in solidification of quaternary Al-rich alloys.
Key words:       
Received:  18 February 2008     
ZTFLH:  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1175

[1]Hecht U,Granasy L,Pusztai T,Bottger B,Apel M,Wi- tusiewicz V,Ratke L,De Wilde J,Froyen L,Camel D, Drevet B,Faivre G,Fries S G,Legendre B,Rex S.Mater Sci Eng,2004;R46:1
[2]Xie F Y,Kraft T,Zuo Y,Moon C H,Chang Y A.Acta Mater,1999;47:489
[3]Yan X,Chen S,Xie F,Chang Y A.Acta Mater,2002;50: 2199
[4]Xie F Y,Yan X Y,Ding L,Zhang F,Chen S L,Chu M G,Chang Y A.Mater Sci Eng,2003;A355:144
[5]Ohsasa K,Nakaue S,Kudoh M,Narita T.ISIJ Int,1995; 35:629
[6]Ode M,Lee J S,Kim S G,Kim W T,Suzuki T.ISIJ Int, 2000;40:870
[7]Kobayashi H,Ode M,Kim S G,Kim W T,Suzuki T.Scr Mater,2003;48:689
[8]Grafe U,Bottger B,Tiaden J,Fries S G.Scr Mater,2000; 42:1179
[9]Cha P R,Yeon D H,Yoon J K.Acta Mater,2001;49: 3295
[10]Zhang R J,Jing T,Jie W Q,Liu B C.Acta Mater,2006; 54:2235
[11]Jacot A,Rappaz M.Acta Mater,2002;50:1909
[12]Jarvis D J,Brown S G R,Spittle J A.Mater Sci Technol, 2000;16:1420
[13]Lee P D,Chirazi A,Atwood R C,Wang W.Mater Sci Eng,2004;A365:57
[14]Miettinen J.Metall Mater Trans,2000;31B:365
[15]Bottger B,Grafe U,Ma D,Fries S G.Mater Sci Technol, 2000;16:1425
[16]Yang B J,Stefanescu D M,Leon-Torres J.Metall Mater Trans,2001;32A:3065
[17]Nastac L.Acta Mater,1999;47:4253
[18]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[19]Wang W,Lee P D,McLean M.Acta Mater,2003;51:2971
[20]Yu J,Xu Q Y,Cui K,Liu B C.Acta Metall Sin,2007;43: 731 (于靖,许庆彦,崔锴,柳百成.金属学报,2007;43:731)
[21]Belteran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[22]Zhu M F,Chert S L,Xie F Y,Hong C P,Chang Y A.Trans Nonferrous Metals Soc China,2006;16(Suppl.2):s180
[23]Zhu M F,Cao W,Chen S L,Hong C P,Chang Y A.J Phase Equilib Diffus,2007;28:130
[24]Chen S L,Daniel S,Zhang F,Chang Y A,Yan X Y,Xie F Y,Schrnid-Fetzer R,Oates W A.Calphad,2002;26:175
[25]Wheeler A A,Boettinger W J,McFadden G B.Phys Rev, 1992;45A:7424
[26]Gránásy L,Pusztai T,Warren J A,Douglas J F,B(?)rzs(?)nyi T,Ferreiro V.Nature Mater,2003;2:92
[27]Brandes E A,Brook G B.Smithells Metals Reference Book.7 Ed.,Berlin:Butterworth-Heinemann Publishing, 1997:1794
[28]Ramirez J C,Beckermann C.Acta Mater,2005;53:1721
[29]Shin Y H,Hong C P.ISIJ Int,2002;42:359
[30]Boettinger W J,Warren J A,Beckermann C,Karma A. Annu Rev Mater Res,2002;32:163
[1] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
[2] TUNG Feng'en;WANG Yuming Institute of Materials Science; Jilin University; Changchun. X-RAY ANALYSIS OF WORK-HARDENING PROCESS FOR POLYCRYSTALLINE а-BRASS DURING UNIAXIAL TENSILE TEST[J]. 金属学报, 1989, 25(2): 82-84.
[3] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[4] DU Hegui;LIU Xin Northeast University of Technology; Shenyang. KINETICS OF CARBON COMBUSTION IN PLASMA AIR[J]. 金属学报, 1989, 25(2): 85-88.
[5] . [J]. 金属学报, 2001, 37(1): 42-46 .
[6] . [J]. 金属学报, 1999, 35(3): 320-324 .
[7] . [J]. 金属学报, 2000, 36(1): 72-76 .
[8] . [J]. 金属学报, 1999, 35(3): 330-333 .
[9] . [J]. 金属学报, 1999, 35(3): 334-336 .
[10] . [J]. 金属学报, 2000, 36(6): 647-650 .
[11] . [J]. 金属学报, 2000, 36(6): 655-658 .
[12] No Author. ACTA METALLURGLCA SLNLCA Volume 28 Series A 1992 SUBJECT INDEX[J]. 金属学报, 1992, 28(12): 63-90.
[13] . [J]. 金属学报, 2000, 36(7): 780-784 .
[14] No Author. ACTA METALLURGICA SINICA(JINSHU XUEBAO) Volume 28 1992 AUTHOR INDEX[J]. 金属学报, 1992, 28(12): 71-94.
[15] Хань Яо-вэнь Инсмцмум мемаддов АН КНР;Г.н.Ойкс Московскц цнсмцмум смадц. НЗУЧЕНИЕ ПРОЦЕССОВ ДЕСУЛЬФУРАЦИИ ХНДКОΓО МЕТАЛЛА В ВАКУУМЕ[J]. 金属学报, 1963, 6(2): 98-110.
No Suggested Reading articles found!