Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 546-552     DOI:
Research Articles Current Issue | Archive | Adv Search |
The numerical simulation of interaction between melting pool and metal powder during laser rapid forming
W.P.Jia;;;;
Cite this article: 

W.P.Jia. The numerical simulation of interaction between melting pool and metal powder during laser rapid forming. Acta Metall Sin, 2007, 43(5): 546-552 .

Download:  PDF(419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Laser Rapid Forming (LRF), an advanced solid freedom fabrication technology, has a bright future in manufacturing of high performance dense metal components with complex structure in aero, spaceflight and many other fields. During LRF, the melting pool free surface serves as a moving window of laser power and powder mass input and a dynamic boundary of the LRF continuous growth domain, so the interaction between laser, powder and melting pool free surface is the basic problem that should be coped with in LRF process. In this paper, the melting pool transient temperature field and gas/powder two phase fluid field numerical model are established. Using finite element birth and death technology, the growth of cladding layers and shape of melting pool free surface are simulated, and using Lagrangian particle tracking model and momentum loss (parallel and perpendicular)option, the interaction between melting pool free surface and powder such as capture and reflect are simulated. At last, the interaction between 316L stainless steel powder, laser and melting pool free surface is calculated, and the numerical result is in agreement with that of the experiment.
Key words:  Laser Rapid Forming      melting pool      interaction      
Received:  20 September 2006     
ZTFLH:  TG124  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/546

[1] Mazumder J, Dutta D, Kikuchi N, Ghosh A. Opt Lasers Eng, 2000; 34: 397
[2] Chen J, Tan H, Yang H O, Xiong J T, Huang W D. Appl Laser,2005; 25(2): 77 (陈静,谭华,杨海欧,熊江涛,黄卫东.应用激光,2005; 25(2)77)
[3] Fu Y C, Loredo A, Martin B, Vannes A B .J Mater Process Technol, 2002; 128: 106
[4] Liu Z X, Chen J, Huang W D, Wu D Y. Chin J Lasers, 2004; 31: 875 (刘振侠,陈静,黄卫东,吴丁毅.中国激光,2004;31:875)
[5] Lin J. Opt Lasers Technol, 1999; 31: 233
[6] Xi M Z, Zhang Y Z, Shi L K, Gao S Y. Chin J Nonferrous Met, 2003; 13: 887 (席明哲,张永忠,石力开,高士友.中国有色金属学报,2003; 13:887)
[7] Toyserkani E, Khajepour A, Corbin S. Opt Lasers Eng, 2004; 41: 849
[8] Huang Y L, Zou D N, Liang G Y, Su J Y. flare Met Mater Eng, 2003; 32: 330 (黄延禄,邹德宁,梁工英,苏俊义.稀有金属材料与工程,2003; 32:330)
[9] Powell J. PhD Dissertation, Imperial College of Science and Technology, London, 1983
[10] Crowe C T. ASME Trans J Fluids Eng, 1982; 104: 297
[11] Ansys Inc. Ansys User's Manual. Pittsburgh, PA: Ansys Inc, 2004
[1] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[2] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[3] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[4] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[5] Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Frédéric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. 金属学报, 2019, 55(4): 511-520.
[6] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[7] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[8] Weidan LI,Xiaohua TAN,Kezhi REN,Jie LIU,Hui XU. MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS[J]. 金属学报, 2016, 52(5): 561-566.
[9] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[10] Bin LIU,Kai GONG,Yanxin QIAO,Shiyun DONG. EVALUATION OF INFLUENCE OF PRESET CRACK BURIAL DEPTH ON STRESS OF LASER CLADDING COATING WITH METAL MAGNETIC MEMORY[J]. 金属学报, 2016, 52(2): 241-248.
[11] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[12] ZHANG Zhipeng, LEI Mingkai. EFFECTIVE PAIR INTERACTION POTENTIAL OF INTERSTITIAL ATOMS IN METAL[J]. 金属学报, 2014, 50(1): 103-109.
[13] LI Xunping ZHOU Minbo XIA Jianmin MA Xiao ZHANG Xinping. EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS[J]. 金属学报, 2011, 47(5): 611-619.
[14] . [J]. 金属学报, 2007, 43(6): 637-642 .
[15] ZHANG Yu-Xiang; WANG Jin-cheng; Gencang Yang; Yaohe Zhou. PHASE-FIELD SIMULATION OF THE EFFECT OF INTER-PARTICLE DIFFUSIONAL INTERACTION ON PRECIPITATE MORPHOLOGY AND COMPOSITION[J]. 金属学报, 2007, 43(10): 1107-1112 .
No Suggested Reading articles found!