Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (11): 1217-1220     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(11): 1217-1220 .

Download:  PDF(598KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The (Tb0.36Dy0 64)1-xHoxFe2 magnetostrictive alloys with <110> orientation were prepared by zone melting directionally solidified method with a velocity of 240mm/h. The magnetostrictive performance and hysteresis of <110> aligned polycrystalline (Tb0.36Dy0 64)1-xHoxFe2 were investigated. An obvious magnetostriction “jump” effect was observed in these samples. The (Tb0.36Dy0.64)1-xHox Fe2 alloys (x<0.3) has the character of giant magnetostrictive with a wide operating temperature range from -60 to 80 oC. The hysteresis, represented by the width of magnetostriction versus the applied field, was reduced due to the addition of Ho. Compared to the Tb0.36Dy0.64Fe1.95 alloy with hysteresis of 104Oe, 135Oe, 166Oe under compressive stress of 0MPa, 5MPa, 10MPa , the magnetostriction hysteresis reduced to 93Oe, 116Oe, 137Oe, by 10.6%, 14.1%, 17.5% for Tb0.324Dy0.576Ho0.1Fe1.95, to 75Oe, 108Oe, 129Oe, by 27.9%, 20.0%, 22.3% for Tb0.288Dy0.512Ho0.2Fe1.95 and to 54Oe, 88Oe, 98Oe by 48.7%, 34.8%, 41.0% for Tb0.252Dy0.448Ho0.3Fe1.95, respectively.
Key words:  TbDyHoFe alloys      directional solidification      Magnetostriction      hysteresis      
Received:  15 March 2007     
ZTFLH:  TG111  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I11/1217

[1]Clark A E.Ferromagnetic Materials.Vol.1,Amsterdam: North-Holland,1980:531
[2]Anjanappa M,Wu Y.Smart Mater Struct,1997;6:393
[3]Tang C C,Du J,Li Y X,Wang F W,Wu G H,Zhan W S,Qu J P.Appl Phys Lett,1998;73:692
[4]Funayama T,Kobayashi T,Sakai I,Sahashi M.Appl Phys Lett,1992;61:114
[5]Ma T Y,Jiang C B,Xu H B.J Alloys Compd,2005;388: 34
[6]Wun-Fogle M,Restorf J B,Clark A E,Lindberg J F.J Appl Phys,1998;83:7279
[7]Wun-Fogle M,Restorf J B,Clark A E.J Appl Phys,2000; 85:6253
[8]Busbridge S C,Piercy A R.IEEE Trans Magn,1995;31: 4044
[9]Jiang C B,Zhao Y,Xu H B.Acta Metall Sin,2004;40: 373 (蒋成保,赵岩,徐惠彬.金属学报,2004;40:373)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[11] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[12] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[13] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
[15] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
No Suggested Reading articles found!