Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 624-628     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF ALTERNATING MAGNETIC FIELD ON THE DISTRIBUTION OF Fe CONTAINING PHASE IN HYPEREUTECTIC Al-2.89%Fe ALLOY
Yi Han; Ban Chunyan; Guo Shijie; Ba Qixian; You Xuechang; Cui Jianzhong
东北大学材料电磁过程研究教育部重点实验室
Cite this article: 

Yi Han; Ban Chunyan; Guo Shijie; Ba Qixian; You Xuechang; Cui Jianzhong. EFFECT OF ALTERNATING MAGNETIC FIELD ON THE DISTRIBUTION OF Fe CONTAINING PHASE IN HYPEREUTECTIC Al-2.89%Fe ALLOY. Acta Metall Sin, 2006, 42(6): 624-628 .

Download:  PDF(492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Fe containing phase in hypereutectic Al-2.89%Fe alloy was accumulated towards the sample center under the alternating magnetic field, which is due to a large compression force orientated the sample axis acted on Al3Fe phases with a large magnetic susceptibility than melt aluminium. X-ray diffraction results showed that there was only Al3Fe phase existing in the Fe containing phases, whether solidified with or without the AC magnetic field. The alternating magnetic field can affect the distribution of the Fe containing phase instead of their type.
Key words:  magnetic field      hypereutectic Al-2.89%Fe alloy      Fe containing phase      
Received:  18 October 2005     
ZTFLH:  TG113.12  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/624

[1] Gillon P. Mater Sci Eng, 2000; A287: 146
[2] Asai S. Sci Technol Adv Mater, 2000; 1: 191
[3] Radjai A, Miwa K. Metall Mater Trans, 2002; 33A: 3025
[4] Zhang J, Tan Y Y, Li S M. Sci Technol Adv Mater, 2001; 2: 205
[5] Liu X F, Bian X F, Liu Y X, Zhang G H, Ma J J. Acta Metall Sin, 1997; 33: 1062 (刘相法,边秀房,刘玉先,张国华,马家骥.金属学报,1997; 33:1062)
[6] Parkhutik P A, Kalinichenko A S, Kupriyanova I Yu, Chebotko L S, Antonevich M A, Savitskaya Ye V. Phys Met Metallogr, 1990; 70: 151
[7] Lu L, Dahle A K. Metall Mater Trans, 2005; 36A: 819
[8] Zhou Z P, Ma J C, Bai Y H, Yu H P, Li R D. Foundry, 2002; 51: 343 (周振平,马建超,白彦华,于海朋,李荣德.铸造,2002;51: 343)
[9] Li R D, Ma J C, Zhou Z P. Hot Work Technol, 2004; (4): 14 (李荣德,马建超,周振平.热加工工艺, 2004;(4):14)
[10] Liu P, Thorvaldsson T, Dunlop G L. Mater Sci Technol, 1986; 2: 1009
[11] Mondolfo L F. Aluminum Alloys: Structure and Properties. London: The Whitefriars Press Ltd, 1976: 284, 88
[1] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[4] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[5] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[6] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[7] Yongli JIN,Hai YU,Jieyu ZHANG,Zengwu ZHAO. Effects of Magnetic Field on Reduction of CaOContaining Iron Oxides[J]. 金属学报, 2019, 55(3): 410-416.
[8] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[9] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[10] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[11] Sansan SHUAI, Xin LIN, Wuquan XIAO, Jianbo YU, Jiang WANG, Zhongming REN. Effect of Transverse Static Magnetic Field on Microstructure of Al-12%Si Alloys Fabricated by Powder-BlowAdditive Manufacturing[J]. 金属学报, 2018, 54(6): 918-926.
[12] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[13] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[14] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[15] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
No Suggested Reading articles found!