|
|
MORPHOLOGICAL EVOLUTION OFSOLIDIFICATION MICROSTRUCTURE OF BINARY ALLOY UNDER STIRRING |
LI Tao; CHEN Guang; LIN Xin; HUANG Weidong |
南京理工大学材料科学与工程系 |
|
Cite this article:
LI Tao; CHEN Guang; LIN Xin; HUANG Weidong. MORPHOLOGICAL EVOLUTION OFSOLIDIFICATION MICROSTRUCTURE OF BINARY ALLOY UNDER STIRRING. Acta Metall Sin, 2006, 42(6): 577-583 .
|
Abstract Morphological evolutions during the solidification of
succinonitrite-5%water(atomic fraction) transparent alloy and
Sn-15%Pb mass fraction) alloy under mechanical stirring were
investigated experimentally by in situ observation and quenching,
separately. The results showed that the primary solidified
microstructures have a globular shape when the strong convection was
induced by mechanical stirring. According to the morphological stability
theory, the formation mechanism of globular microstructure was discussed.
The analysis indicated that the rotation of primary microstructure in a
shear flow induced a stabilizing effect on the morphological instability
at the solid-liquid interface and promoted the globular growth of
solidification microstructure.
|
Received: 23 September 2005
|
|
[1] Flemings M C. Metall Trans, 1991; 22B: 269 [2] Doherty R D, Lee H-I, Feest E A. Mater Sci Eng, 1984; 65: 181 [3] Hellawell A. In: Kirkwood D H, Kapranos P, eds., Proc 4th Int Conf on Semi-Solid Processing of Alloys and Composites, Sheffield, UK: The University of Sheffield, 1996: 60 [4] Mullis A M. Ada. Mater, 1999; 47: 1783 [5] Molenaar J M M, Katgerman L, Kool W H, Smeulders R J. J Mater Sci, 1986; 21; 389 [6] Li T, Huang W D, Lin X. Chin J Nonferrous Met, 2000; 10: 635 (李涛,黄卫东,林鑫.中国有色金属学报,2000;10:635) [7] Ji S, Fan Z, Bevis M J. Mater Sci Eng, 2001; A299: 210 [8] Fan Z. Int Mater Rev, 2002; 47: 49 [9] Niroumand B, Xia K. Mater Sci Eng, 2000; A283: 70 [10] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323 [11] Mullins W W, Sekerka RF. J Appl Phys, 1964; 35: 444 [12] Coeniell S R, Hurle D T J, Sekerka R F. J Cryst Growth, 1976; 31: 1 [13] Kotlen G R, Tiller W A. In: Peiser H S, ed., Crystal Growth, Oxford: Pergamon, 1967 [14] Langer J S, Muller H-K. Ada. Metall, 1978; 26: 1681 [15] Langer J S, Muller H-K. Ada Metall, 1978; 26: 1689 [16] Muller H-K, Langer J S. Ada Metall, 1978; 26: 1697 [17] Trivedi R. J Cryst Growth, 1980; 48: 93 [18] Cantor B, Vogel A. J Cryst Growth, 1977; 41: 109 [19] Vogel A, Cantor B. J Cryst Growth, 1977; 37: 309 [20] Schulze T P, Davis S H. J Cryst Growth, 1995; 149: 253 [21] Delves R T. 7 Cryst Growth, 1971; 8: 13 [22] Coriell S R, McFadden G B, Boisvert R F, Sekerka R F. J Cryst Growth, 1984; 69: 15 [23] Forth S A, Wheeler A A. J Fluid Mech, 1989; 202: 339 [24] Hobbs A K, Metzener P. J Cryst Growth, 1991; 112: 539 [25] Schulze T P, Davis S H. J Cryst Growth, 1994; 143: 317 [26] Das A, Ji S, Fan Z. Ada Mater, 2002; 50: 4571 [27] Vand V. J Phys Colloid Chem, 1948; 52: 277 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|