Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 259-264     DOI:
Research Articles Current Issue | Archive | Adv Search |
VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL
Cite this article: 

. VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL. Acta Metall Sin, 2006, 42(3): 259-264 .

Download:  PDF(555KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Very high cycle fatigue behaviors of 54SiCrV6 and 54SiCr6 clear high strength spring steels and the fractography observed by means of field emission scanning electron microscope (FESEM) and electron probe microanalyzer (EPMA) are investigated. Experimental results show that for two steels, fatigue failure originates from sample surface matrix at high stress amplitude and from sample interior at low stress amplitude. The S-N curve of 54SiCrV6 spring steel is a typical step-wise curve, and elimination of fatigue limit in 109 cycles regime, however, fatigue limit of 54SiCr6 steel exists. Analysis of fractography shows that internal failure initiates clusters of little inclusions in 54SiCrV6 steel and localized carbide in 54SiCr6 steel. Evaluation of critical inclusion size shows that, in 109 cycles regime, fatigue limit eliminates when inclusion size is greater than critical inclusion size in high strength steel. Contrary, fatigue limit exists.
Key words:  Very high cycle fatigue      S-N curve      fatigue limit      critical inclusion size      
Received:  13 September 2005     
ZTFLH:  TG142.1  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/259

[1] Mukamami Y, Kawakami K, Saito M. Trans Jpn Soc Spring Res, 1990; 35: 1
[2] Larsson M, Melander A, Blom R, Preston S. Mater Sci Technol, 1991; 7: 998
[3] Hui W J, Dong H, Weng Y Q. J Iron Steel Res, 2001; 13: 67 (惠卫军,董瀚,翁宇庆.钢铁研究学报, 2001;13:67)
[4] Harada Y, Mori K. J Mater Process Technol, 2005; 15: 498
[5] Ai J H, Zhao T C, Gao H J, Hu Y H, Xie X S. J Mater Process Technol, 2005; 30: 390
[6] Nam W J, Lee C S, Ban D Y. Mater Sci Eng, 2000; A289: 8
[7] Shin J C, Lee S H, Ryu J H. Int J Fatigue, 1999; 21: 571
[8] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[9] Furuya Y, Abe T, Matsuoka S. Fatigue Fract Eng Mater Struct, 2003; 26: 641
[10] Zhang J M, Yang Z G, Zhang J F, Li G Y, Li S X, Hui W J, Weng Y Q. Acta Metall Sin, 2005; 41: 145 (张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆. 金属学报,2005;41:145)
[11] Shiozawa K, Lu L, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781
[12] Yang Z G., Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235
[13] Zhang J M, Zhang J F, Yang Z G, Li G Y, Yao G, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2005; A394: 126
[14] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 2000; 23: 893
[15] Wang Q Y, Berara J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[16] Lankford J. Int Met Rev, 1977; 22: 221
[17] Larsson M Melander A, Nordgren A. Mater Sci Technol, 1993; 9: 235
[18] Loren S. Int J Fatigue, 2003; 25: 129
[19] Murakami Y, Usuki H. Trans Jpn Soc Mech Eng, 1989; 55A: 213
[20] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Amsterdam: Elsevier, 2002: 91
[21] Yang Z G, Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235l
[1] Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. 金属学报, 2017, 53(9): 1047-1054.
[2] Qingsong ZHANG,Zhenyu ZHU,Jiewei GAO,Guangze DAI,Lei XU,Jian FENG. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel[J]. 金属学报, 2017, 53(3): 307-315.
[3] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[4] Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD[J]. 金属学报, 2016, 52(1): 41-50.
[5] ZHANG Yanbin, ZHANG Limin, ZHANG Jiwang, ZENG Jing. EFFECT OF ANODIZING TREATMENT ON BENDING FATIGUE PROPERTIES OF 2014-T6 ALUMINIUM ALLOY[J]. 金属学报, 2014, 50(6): 715-721.
[6] ZHANG Jiwang LU Liantao ZHANG Weihua. ANALYSIS ON FATIGUE PROPERTY OF MICROSHOT PEENED MEDIUM CARBON STEEL[J]. 金属学报, 2009, 45(11): 1378-1383.
[7] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[8] . Fatigue Property of Ultrafine-grained Copper Produced by ECAP[J]. 金属学报, 2007, 43(5): 498-502 .
[9] Wei-Xing YAO. Gigacycle Fatigue Life Distribution of Aluminum Alloy LC4CS[J]. 金属学报, 2007, 43(4): 399-403 .
[10] ZHANG Zhefeng; LI Guangyi; WANG Zhongguang; LI Shouxin (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE LIVES OF GRAIN BOUNDARY AND COMPONENT CRYSTALS IN A COPPER BICRYSTAL[J]. 金属学报, 1998, 34(1): 51-56.
[11] YAO Mei;WANG Shengping;LI Jinkui;WANG Renzhi;LI Xiangbin Harbin Institute of Technology Beijing Institute of Aeronautical Materials. AN ASPECT OF INTERNAL FATIGUE LIMIT FOR METALS WITH AID OF STRENGTH APPRAISAL ON HARDERED STEELS[J]. 金属学报, 1993, 29(11): 33-41.
[12] KANG Zengqiao;GAI Xiuying;LI Jiabao;WANG Zhongguang State Key Laboratory for Fatigue and Fracture of Materials Institute of Metal Research; Academia Sinica; shenyang Correspondent research assistant; Institute of Metal Research; Academia Sinica; Shenyang 110015. INFLUENCE OF RESIDUAL STRESS AND SURFACE MORPHOLOGY ON FATIGUE PROPERTIES OF 60Mn STEEL[J]. 金属学报, 1992, 28(6): 40-46.
[13] WANG Hongwei;MA Jinsheng;NAN Junma;HE Jiawen Xi'an Jiaotong University. SURFACE YIELD STRENGTH VERSUS FATIGUE LIMIT FOR STEELS[J]. 金属学报, 1991, 27(5): 49-53.
No Suggested Reading articles found!