|
|
VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL |
|
Cite this article:
. VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL. Acta Metall Sin, 2006, 42(3): 259-264 .
|
Abstract Very high cycle fatigue behaviors of 54SiCrV6 and 54SiCr6 clear high strength spring steels and the fractography observed by means of field emission scanning electron microscope (FESEM) and electron probe microanalyzer (EPMA) are investigated. Experimental results show that for two steels, fatigue failure originates from sample surface matrix at high stress amplitude and from sample interior at low stress amplitude. The S-N curve of 54SiCrV6 spring steel is a typical step-wise curve, and elimination of fatigue limit in 109 cycles regime, however, fatigue limit of 54SiCr6 steel exists. Analysis of fractography shows that internal failure initiates clusters of little inclusions in 54SiCrV6 steel and localized carbide in 54SiCr6 steel. Evaluation of critical inclusion size shows that, in 109 cycles regime, fatigue limit eliminates when inclusion size is greater than critical inclusion size in high strength steel. Contrary, fatigue limit exists.
|
Received: 13 September 2005
|
|
[1] Mukamami Y, Kawakami K, Saito M. Trans Jpn Soc Spring Res, 1990; 35: 1 [2] Larsson M, Melander A, Blom R, Preston S. Mater Sci Technol, 1991; 7: 998 [3] Hui W J, Dong H, Weng Y Q. J Iron Steel Res, 2001; 13: 67 (惠卫军,董瀚,翁宇庆.钢铁研究学报, 2001;13:67) [4] Harada Y, Mori K. J Mater Process Technol, 2005; 15: 498 [5] Ai J H, Zhao T C, Gao H J, Hu Y H, Xie X S. J Mater Process Technol, 2005; 30: 390 [6] Nam W J, Lee C S, Ban D Y. Mater Sci Eng, 2000; A289: 8 [7] Shin J C, Lee S H, Ryu J H. Int J Fatigue, 1999; 21: 571 [8] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159 [9] Furuya Y, Abe T, Matsuoka S. Fatigue Fract Eng Mater Struct, 2003; 26: 641 [10] Zhang J M, Yang Z G, Zhang J F, Li G Y, Li S X, Hui W J, Weng Y Q. Acta Metall Sin, 2005; 41: 145 (张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆. 金属学报,2005;41:145) [11] Shiozawa K, Lu L, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781 [12] Yang Z G., Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235 [13] Zhang J M, Zhang J F, Yang Z G, Li G Y, Yao G, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2005; A394: 126 [14] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 2000; 23: 893 [15] Wang Q Y, Berara J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673 [16] Lankford J. Int Met Rev, 1977; 22: 221 [17] Larsson M Melander A, Nordgren A. Mater Sci Technol, 1993; 9: 235 [18] Loren S. Int J Fatigue, 2003; 25: 129 [19] Murakami Y, Usuki H. Trans Jpn Soc Mech Eng, 1989; 55A: 213 [20] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Amsterdam: Elsevier, 2002: 91 [21] Yang Z G, Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235l |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|