Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 265-272     DOI:
Research Articles Current Issue | Archive | Adv Search |
A NEW MATHEMATICAL MODEL FOR HARDENABILITY OF STEELS
Cite this article: 

. A NEW MATHEMATICAL MODEL FOR HARDENABILITY OF STEELS. Acta Metall Sin, 2006, 42(3): 265-272 .

Download:  PDF(198KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new mathematical model and a parameter for the hardenability of steels is presented in this paper. A differential equation of the Jominy curves has been constructed according to the Jominy experimental data and change of derivative of the Jominy curve. The linear trial method was used to choose optimal type of function. The model for calculating the hardness distributions has been described as the subsection functions consisting of both straight line and curve. The straight depicts the hardness of the martensite region where the martensite is entirely obtained and the hardness remains a constant maximum value. In addition, the hardness is continuously reduced in the region of the curve until the hardness approaches a minimum value. The hardenability of steels has been expressed as a coefficient that is equal to the whole distance of inflexion of Jominy curve in numerical value. The distance includes length of straight line in which martensite is entirely obtained, while it is not related to the Jominy distance. The value of the hardenability has been obtained by a method of the non-linear curve fitting to the Jominy test data. Very good agreements have been obtained between the simulated curves and the experimental measurements.
Key words:  hardenability      mathematical model      Jominy curve      
Received:  10 November 2005     
ZTFLH:  TG115.6  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/265

[1] Wu J X, Zhou G Y, Xun Y M. Application Technology of Hardenability of Steels. Beijing: China Machine Press, 1994: 308 (吴季恂,周光裕,荀毓闽.钢的淬透性应用技术.北京:机械 工业出版社,1994:308)
[2] Weymueller C R. Met Prog, 1973; 103: 93
[3] Just E. Met Prog, 1969; 95: 871
[4] Breen D H, Walter G H, Sponzilli J T. Met Prog, 1973; 104: 43
[5] Yu B H. Iron Steel, 1985; 20(3): 40 (余柏海.钢铁,1985;20(3):40)
[6] Lund T. Scan J Metall, 1990; 19: 227
[7] Andersson K, Kivivuori S, Korhonen A S. Mater Sci Forum, 1994; 163: 683
[8] Filetin T, Liscic B, Galinec J. Adv Mater Processes, 1995; 148: 2
[9] Cook W T, Morris P F, Woollard L. J Mater Eng Perform, 1997; 6: 443
[10] Komenda J, Sandstrom R, Tukiainen M. Steel Res, 1997; 89: 132
[11] Dobrzanski L A, Sitik W. J Mater Process Technol, 1999; 90: 467
[12] Miao Z H, Hu W Y. Trans Met Heat Treat, 2000; 21(1): 57 (缪宗华,胡为颖.金属热处理学报, 2000;21(1):57)
[13] Thomas K, Gearv E A, Avis P, Bishop D. Mater Design, 1992; 13: 17
[14] Mostert R J, van Rooyen G T. Mater Sci Technol, 1991; 7: 803
[15] Li M V, Niebuhr D V, Meekisho L L, Atteridge D G. Met- all Mater Trans, 1998; 29B: 661
[16] Dobrzanski L A, Sitek W. J Mater Process Technol, 1997; 64: 117
[17] Geary E A, Cook W T, Lane K A G. Mater Sci Forum, 1994; 163: 689
[18] Vermeulen W G, van der Wolk P J, de Weijer A P, van der Zwaag S. J Mater Eng Perform, 1996; 5: 57
[19] Filetin T, Liscic B, Galinec J. Heat Treat Met, 1996; 23: 63
[20] Dobrzanski L A, Sitek W. J Mater Process Technol, 1998; 78: 59
[21] Dobrzanski L A, Sitek W. J Mater Process Technol, 1999; 92-93: 8
[22] Yao X, Zhu Z C, Gu J F, Hu M J, Zhang W M. Mater Mech Eng, 2003; 27(8): 8 (姚新,朱祖昌,顾剑锋,胡明娟,张伟民.机械工程材料, 2003;27(8):8)
[23] Fu D Z, Lin H G. Hardenability Handbook of Steels. Beijing: China Machine Press, 1973 (傅代直,林慧国.钢的淬透性手册.北京:机械工业出版社, 1973)
[24] AMS Handbook Committee. Metals Handbook. 9t ed. , Vol.1 , Metals Park , Ohio: American Society for Metals, 1978)
[1] LU Chaoran, XU Le, SHI Chao, LIU Jinde, JIANG Weibin, WANG Maoqiu. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel[J]. 金属学报, 2020, 56(10): 1324-1334.
[2] Dunming LIAO, Liu CAO, Fei SUN, Tao CHEN. Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process[J]. 金属学报, 2018, 54(2): 161-173.
[3] Xuewei YAN,Ning TANG,Xiaofu LIU,Guoyan SHUI,Qingyan XU,Baicheng LIU. MODELING AND SIMULATION OF DIRECTIONAL SOLIDIFICATION BY LMC PROCESS FOR NICKEL BASE SUPERALLOY CASTING[J]. 金属学报, 2015, 51(10): 1288-1296.
[4] PAN Tao, WANG Xiaoyong, SU Hang, YANG Caifu. EFFECT OF ALLOYING ELEMENT Al ON HARDENABILITITY AND MECHANICAL PROPERTIES OF MICRO-B TREATED ULTRA-HEAVY PLATE STEELS[J]. 金属学报, 2014, 50(4): 431-438.
[5] LIU Shengdan LI Chengbo DENG Yunlai ZHANG Xinming. INFLUENCE OF AGING ON THE HARDENABILITY OF 7055 ALUMINUM ALLOY THICK PLATE[J]. 金属学报, 2012, 48(3): 343-350.
[6] . Modeling of Three-Phase Flows and Slag Layer Behavior in an Argon Gas Stirred Ladle[J]. 金属学报, 2008, 44(10): 1198-1202 .
[7] XiaoGuang Zhou. Modelling of Dynamic Recrystallization for Nb Bearing Steels on Flexible Thin Slab Rolling[J]. 金属学报, 2008, 44(10): 1188-1192 .
[8] LI Weibiao; WANG Fang; QI Fengsheng; LI Baokuan. Mathematical Model on Steel Strip--Feeding of Mold in Continuous Casting Process[J]. 金属学报, 2007, 43(11): 1191-1194 .
[9] . NEW METHOD FOR PREDICTION OF JOMINY CURVE OF STRUCTURAL STEEL[J]. 金属学报, 2006, 42(4): 405-410 .
[10] . MATHEMATICAL MODEL OF U-CURVE OF STEELS[J]. 金属学报, 2006, 42(10): 1019-1024 .
[11] XU Daming ; ZHANG Chengjun ; SI Guangju (School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001)(Engineering College; Jiamusi University; Jiamusi 154007). MICRO-/MACRO-SCOPIC MODELING OF SOLUTAL MASS TRANSPORT IN DENDRITE SOLIDIFICAfION WITH PARTIAL SOLID BACK DIFFUSION[J]. 金属学报, 1998, 34(7): 678-688.
[12] GUAN Kezhi; FAN Bailin; ZHOU Jihua(University of Science and Technology Beijing; Beijing 100083)(Manuscript received 1995-10-30; in revised form 1996-03-26). FLOW STRESS OF BRASS AT HOT DEFORMATION[J]. 金属学报, 1996, 32(7): 749-754.
[13] SHENG Dongyuan; NI Mansen; DENG Kaiwen; LIU Jiaqi; GAN Yong; XIAO Zeqiang (National Research & Engineering Center of Continuous Casting Technology;Gentral Iron and Steel Research Institute; Ministry of Metallurgical industry;Beijing 100081)(Manuscript received 1995-11-09; in revised form 1996-04-17). MATHEMATICAL MODEL OF FLUID FLOW,TEMPERATURE CONTROL AND INCLUSION BEHAVIOUR IN CONTINUOUS CASTING TUNDISH[J]. 金属学报, 1996, 32(7): 742-748.
[14] HUANG Dianbing; YANG Xuemin; YANG Tianjun; KONG Lingtan (University of Science and Technology Beijing; Beijing 100083). KINETICS AND MATHEMATICAL MODEL FOR REDUCTION PROCESS OF IRON ORE BRIQUETTE CONTAINING CARBON[J]. 金属学报, 1996, 32(6): 629-636.
[15] YIN Aijun; LI Jing; LI Hinhai; HUANG Kexiong; JIANG Hanying (Central South University of Technology; Changsha 410083) (Manuscript received 1995-06-30; in revised form 1995-12-01). COMPUTER SIMULATION ON MINOR ELEMENT BEHAVIOUR IN COPPER FLASH SMELTING[J]. 金属学报, 1996, 32(4): 387-392.
No Suggested Reading articles found!