Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 251-258     DOI:
Research Articles Current Issue | Archive | Adv Search |
WANG Hang; DING Xiangdong; XIAO Lin; SUN Jun
Cite this article: 

WANG Hang; DING Xiangdong; XIAO Lin; SUN Jun. . Acta Metall Sin, 2006, 42(3): 251-258 .

Download:  PDF(522KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Macroscopic response and microscopic substructure have been studied for Zr-4 alloy in the cold-worked condition, which was subjected to biaxial out-of-phase loading with different phase angles of 30o 、60o 、90o and different equivalent strain amplitudes of 0.4%、0.6%、0.8%. The results show that the delay angle between stress deviation and strain increment tensor firstly exhibits a large variation range, and then drop to saturation as the plastic deformation processes. The variation range of delay angle depends on the curvature of loading path, it has the minimum value at 90o phase angle, and has the maximum one at 30o. The average value of equivalent stress increases, however, its variation range decreases to stable as the phase angle and equivalent strain amplitude increase. Zr-4 alloy displays an initial hardening followed by cyclic softening under out-of-phase loading. The Mises stress response curve of Zr-4 alloy under out-of-phase loading lies above that under both unaxial and in-phase loading. It indicates that cyclic additional hardening is displayed in Zr-4 under out-of-phase loading. TEM examination shows that the typical dislocation configuration changes from individual dislocation lines to tangles and embryonic dislocation cells as the phase angle and the equivalent strain amplitude increase. The isotropic hardening mechanism plays an important role in inducing cycle additional hardening.
Key words:  Zr-4      proportional loading      non-proportional loading      additional hardening      dislocation      
Received:  16 June 2005     
ZTFLH:  TG146.4  
  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/251

[1] Xiao L, Kuang Z B. Acta Mater, 1996; 44: 3059
[2] Doong S H, Socie D F, Robertson I M. ASME J Eng Mater Technol, 1990; 112: 456
[3] McDowell D L. J Mech Phys Solids, 1985; 33: 556
[4] Doong S H, Socie D F. ASME J Eng Mater Technol, 1991; 113: 23
[5] Nishino S, Naomi H, Masao S. Fatigue Fracture Eng Mater Struct, 1986; 9: 65
[6] McDowell D L, Stahl D R. Metall Trans, 1988 ; 19A: 1277
[7] Ilyushin A A, Stahl D R, Stock S R, Antolovich S D. Appl Math Mech, 1954; 18: 641
[8] Lamba H S, Sidebottom O M. ASME J Eng Mater Technol, 1978; 100: 96
[9] Shiratori E, Ikegami K, Kaneko K. J Mech Phys Solids, 1975; 23: 325
[10] Ohashi Y, Kurita T, Suzuki T. J Mech Phys Solids, 1981; 29: 51
[11] Zhao S X. PhD Dissertation, Xi'an Jiaotong University, 1996 (赵社戌.西安交通大学博士学位论文, 1996)
[12] Xiao L, Umakoshi Y, Sun J. Metall Mater Trans, 2001; 32A: 2841
[13] Xiao L, Kuang Z B. Acta Metall Sin, 1998; 34: 242 (肖 林,匡震邦.金属学报,1998;34:242)
[14] Xiao L. ASME J Eng Mater Technol, 2000; 122: 42
[15] Pochettino A A, Gannio N, Vial Edwards C, Penelle R. Scr Metall Mater, 1992; 27: 1859
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!