Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 143-146     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of Hydrogen on the Microstructure and High Temperature Mechanical Properties of Ti--60 Alloy
LI Fang
上海大学材料研究所
Cite this article: 

LI Fang. Effects of Hydrogen on the Microstructure and High Temperature Mechanical Properties of Ti--60 Alloy. Acta Metall Sin, 2006, 42(2): 143-146 .

Download:  PDF(502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of hydrogen charging on the microstructure (α+β)/βtransformation and the mechanical properties of Ti-60 alloy at high temperature have been investigated. The results show that the volume fraction of primaryαand the (α+β)/βtransformation temperature is continuously decreased with increasing hydrogen contents. The result also indicate that the yield strength at high temperature is also continuously decreased with hydrogen concentration, and the minimum yield strength occurs at a concentration which corresponds to the (α+β)/βtransition and that further increase in yield strength is due to the hardening effect of hydrogen addition in the βphase.
Key words:  hydrogen      Ti-60 alloy      yield strength      transformation point      
Received:  27 May 2005     
ZTFLH:  TG146.23  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/143

[1] Han M C. Aerosp Mater Technol, 1999; (1): 23(韩明臣.宇航材料工艺,1999;(1):23)
[2] Ilyin A A, Polkin I S, Moamonov A M, Nosov V K. In: Blenkinsop P A, Evans W J, Flower H M, eds., Titanium'95: Science and Technology, London: Institute of Materials, 1996: 2462
[3] Costa J E, Williams T C, Thompson A W. Metall Trans, 1987; 18A: 1421
[4] Hou H L, Li Z Q, Wang Y J, Guan Q. Chin J Nonferrous Met, 2003; 13: 533 (侯红亮,李志强,王亚军,关桥.中国有色金属学报,2003;13:533)
[5] Senkov O N, Froes F H. Int J Energy, 1999; 24: 565
[6] Murzinova M A, Salishchev G A, Afonichev D D. Int J Energy, 2002; 27: 775
[7] Kerr W R, Smith P R, Rosenblum M E, Gurney F J, Mahajan Y R, Bidwell L R. In: Kimura H, Izumi O, eds., Titanium 80: Science and Technology. Warrendale: TMSAIME, 1980: 2477
[8] Lai Z H. In: Sun W C, Cui Z P, eds., Proc 7th National Conf on Titanium and Titanium Alloys, Changsha: Central South University of Technology Press, 1991: 266 (赖祖涵.见:孙文川,崔祝屏主编,第七届全国钛及钛合金学术交流会文集,长沙:中南工业大学出版社,1991:266)
[9] Fang T Y, Wang W H. Mater Chem Phys, 1998; 56: 35
[10] Yang K, Edmonds D V. Scr Metall Mater, 1993; 28: 71
[11] Senkov O N, Jonas J J. Metall Mater Trans, 1996; 27A: 1869G
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[5] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[6] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[9] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[13] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[14] Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. 金属学报, 2018, 54(9): 1289-1296.
[15] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
No Suggested Reading articles found!