Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 1004-1008     DOI:
Research Articles Current Issue | Archive | Adv Search |
HYDROGEN-INDUCED SEMICONDUCTOR TRANSFORMATION OF PZT FERROELECTRIC CERAMICS
HUANG Haiyou; CHU Wuyang; SU Yanjing; GAO Kewei; LI Jinxu; QIAO Lijie
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

HUANG Haiyou; CHU Wuyang; SU Yanjing; GAO Kewei; LI Jinxu; QIAO Lijie. HYDROGEN-INDUCED SEMICONDUCTOR TRANSFORMATION OF PZT FERROELECTRIC CERAMICS. Acta Metall Sin, 2005, 41(9): 1004-1008 .

Download:  PDF(208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Semiconductor transformation of PZT-5H ferroelectric ceramics induced by hydrogen has been investigated. The results showed that the leakage current and carrier concentration increased and the resistivity decreased with increasing hydrogen concentration, and the color of specimen changed from yellow to black. Hydrogen could induce a transition of the insulating PZT-5H ferroelectric ceramics to n-type semiconductor. During charging in H2 at the temperature higher than the Curie point, hydrogen would restrain the phase transformation from cubic to tetragonal, resulting in disappearance of ferroelectricity at room temperature. Charging at room temperature, however, did not change the crystal structure of the tetragonal ferroelectric ceramics. The properties and color of PZT-5H were reinstated after outgassing at high temperature.
Key words:  PZT-5H ferroelectric ceramics      hydrogen      hydrogen-induced semiconductor transformation      
Received:  18 January 2005     
ZTFLH:  TG111.6  
  TG148  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/1004

[1] Han J P, Ma T P. Appl Phys Lett, 1997; 71: 1267
[2] Behm D A, Felz C T, Hannes R, Pinault S C. J Am Chem, 1989; 72: 2279
[3] Ikarashi N. Appl Phys Lett, 1998; 73: 1955
[4] Aggarwal S, Perusse S R, Tipton C W, Ramesh R, Drew H D, Venkatesan T, Romero D B, Podobedov V B, Weber A. Appl Phys Lett, 1998; 73: 1973
[5] Tamura T, Matsuura K, Ashida H, Kondo K, Otani S. Appl Phys Lett, 1999; 74: 3395
[6] Aggarwal S, Perusse S R, Nagaraj B, Ramesh R. Appl Phys Lett, 1999; 74: 3023
[7] Evans J T, Boyer L L, Velasquez G, Ramesh R, Aggarwal S, Keramidas V. Jpn J Appl Phys, 1999; 38B: 5361
[8] Rajopadhye N R, Bhoraskar S V, Badrinarayan S, Sinha A P B. J Mater Sci, 1988; 23: 2631
[9] Chen W P, Li L T, Wang Y, Gui Z L. J Mater Res, 1998; 13: 1110
[10] Peng X, Su Y J, Gao K W, Qiao L J, Chu W Y. Mater Lett, 2004; 58: 2073
[11] Shirasaki S, Yamamura H, Haneda H, Kakegawa K, Moori J. J Chem Phys, 1980; 73: 4640
[12] Harman G G. Phys Rev, 1967; 106: 1358
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[5] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[6] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[11] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[12] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[13] Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. 金属学报, 2018, 54(9): 1289-1296.
[14] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[15] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
No Suggested Reading articles found!