Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 9-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Simulation Of Internal~ Stresses~ Near The Surface And Fatigue Crack Nucleation For A Copper Single Crystal In Cyclic Deformation Saturation Stage
YANG Jihong; ZHANG Xinping; Y. W. MAI; LI Yong
College of Physics and Technology; Shenyang Normal University; Shenyang 110034
Cite this article: 

YANG Jihong; ZHANG Xinping; Y. W. MAI; LI Yong. Simulation Of Internal~ Stresses~ Near The Surface And Fatigue Crack Nucleation For A Copper Single Crystal In Cyclic Deformation Saturation Stage. Acta Metall Sin, 2005, 41(1): 9-.

Download:  PDF(392KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  SEM--ECC technique was employed to observe and characterize the dislocation microstructures during the saturation stage of cyclic deformations in a copper single crystal. Some band--like or spot--like dark zones were found in the dislocation microstructures, which located either at the edge region of the deformed specimen or at the interface between the dislocation matrix and the PSB. To interpret the experiment results, the near surface dislocation microstructure were simulated and the internal stress distributions induced by those dislocations were calculated by using discrete dislocation dynamics method. The simulation results show that near the free surface region, the maximum internal stresses or stress concentration appear at the dark zones which correspond to the interfaces between the PSB and the dislocation matrix or the PSB--matrix--surface interfaces, meaning that fatigue cracks initiate preferentially at these dark zones. The simulated results can well explain the observated ones.
Key words:  copper single crystal      cyclic deformation      crack nucleation      
Received:  07 January 2004     
ZTFLH:  TB111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/9

[1] Suresh S. Fatigue of Materials. UK, Cambridge: Cambridge University Press, 1998: 132
[2] Miller K J, de Los Rios E R. Short Fatigue Crack. London: European Structural Integrity Society Publication,1992: 55
[3] Zhang X P, Wang C H, Chen W, Ye L, Mai Y W. ScrMater, 2001; 44: 2443
[4] Lukas P, Kunz L. Mater Sci Eng, 2001; A 314: 7
[5] Forsyth P J E. Nature, 1953; 171: 172
[6] Katigirl K, Omura A, Koyanagi K, Awatani J, ShiraishiT, Kaneshiro H. Metall Trans, 1977; 8 A: 1769
[7] Basinski Z S, Pascual R, Basinski S J. Ada Metall, 1983;31: 591
[8] Hunsche A, Neumann P. Acta Metall, 1986; 34: 207
[9] Ma B T, Laird C. Acta Metall, 1989; 37: 325
[10] Antonopoulos J G, Brown L M, Winter A T. Philos Mag,1976; 34: 549
[11] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; 44A: 405
[12] Tanaka K, Mura T. J Appl Mech, 1981; 48: 97
[13] Sauzay M, Gilormini P. Fati Frac Eng Mater Struct, 2000;23: 573
[14] Repetto E A, Ortiz M. Acta Mater, 1997; 45: 2577
[15] Yang J H, Li Y, Li S X, Ma C X, Li G Y. Mater Sci Eng,2001; 299 A: 51
[16] Yang J H, Li Y, Cai Z, Li S X, Ma C X, Han E H, Ke W.Mater Sci Eng, 2003; 345 A: 164
[17] Li S X, Li Y, Li G Y, Yang J H. Philos Mag, 2002; 82A:867
[18] Yang S H. Principle of Dislocation Theory in Crystals. 2nd ed, Beijing: Science Press, 1998: 81(杨顺华.晶体位错理论基础(第一卷).第2版,北京:科学出版社,1998:81)
[19] Mughrabi H. Mater Sci Eng, 2001; 309-310 A: 237
[20] Holzwarth U, Essmann U. Appl Phys, 1993; 57 A: 1319
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[3] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[4] ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. 金属学报, 2014, 50(6): 700-706.
[5] JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. 金属学报, 2009, 45(7): 873-879.
[6] . STUDY OF ADIABATIC SHEAR BANDS IN FATIGUED COPPER SINGLE CRYATALS WITH DIFFERENT ORIENTATIONS UNDER HIGH VELOCITY IMPACT[J]. 金属学报, 2006, 42(3): 245-250 .
[7] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[8] YANG Jihong; JIA Weiping; LI Shouxin. Observation Of The Dislocation Structure In [013] Copper Single Crystal During Corrosion Fatigue In Nacl Aqueous Solution[J]. 金属学报, 2004, 40(1): 99-102 .
[9] LI Xiaowu; WANG Zhongguang;LI Shouxin (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academyof Sciences; Shenyang 110015)Correspondent: LI Xiaowu; Tel: (024)23843531-55925; Fax: (024)23891320;E-mail: rwli imr.ac. cn. CYCLIC STRAIN HARDENING AND SATURATION OF [■12]DOUBLE-SLIP-ORIENTED COPPER SINGLE CRYSTALS[J]. 金属学报, 1998, 34(8): 864-869.
[10] ZHANG Zhefeng; WANG Zhongguang; SU Huihe(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)Correspondent: ZHANG Zhefeng Tel: (024)23843531-55225; Fax: (024)23891320. CYCLIC DEFORMATION BEHAVIOR OF A COPPER BICRYSTAL WITH A PERPENDICULAR GRAIN BOUNDARY[J]. 金属学报, 1998, 34(8): 841-846.
[11] JIA Weiping; LI Shouxin; WANG Zhongguang; LI Xiaowu; LI Guangyi(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). COMPARISON BETWEEN CYCLIC DEFORMATION BEHAVIORS OF NON-ISOAXIAL COPPER TRICRYSTAL AND BICRVSTAL[J]. 金属学报, 1998, 34(7): 696-704.
[12] (LI Xiaowu; WANG Zhongguang; SUN Shouguang; WU Shiding; LI Shouxin;LI Guangyi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Mechanical Engineering; Northern Jiaotong University; Beijing 100044). CYCLIC DEFORMATION BEHAVIOR OF [011]MULTIPLE-SLIP-ORIENTED COPPER SINGLE CRYSTALS Ⅱ. Surface Slip Features and Deformation Bands[J]. 金属学报, 1998, 34(5): 552-560.
[13] LI Xiaowu; WANG Zhongguang; SUN Shouguang; WU Shiding;LI Shouxin;LI Guangyi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Mechanical Engineering; Northern Jiaotong University; Beijing 100044). CYCLIC DEFORMATION BEHAVIOR OF [011] MULTIPLE-SLIP-ORIENTED COPPER SINGLE CRYSTALSCyclic Stress-Strain Response[J]. 金属学报, 1998, 34(5): 545-551.
[14] I. Cyclic Deformation Behavior and Slip Morphology HU Yunming; WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy ofSciences; Shenyang 110015) (Manuscript received 1996-09- 12; in revised form 1997-03-07). CYCLIC DEFORMATION BEHAVIOR AND FATIGUE CRACK INIT1ATION IN COPPER BICRYSTALS[J]. 金属学报, 1997, 33(8): 814-823.
[15] Gong Bo;Chen Daolun; Su Huihe; Wang Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). DIRECT OBSERVATION OF DISLOCATION STRUCTURE IN DEFORMED MATERIALS BY SEM──Dislocation Structure in a Fatigued [001] Cu Single Crystal[J]. 金属学报, 1997, 33(6): 561-565.
No Suggested Reading articles found!