Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 73-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Low Cycle Fatigue Crack Propagation in Stainless Steel Under Combined Torsion and Tension
YU Huichen; SUN Yanguo;XIE Shishu; K. TANAKA
Beijing Institute of Aeronautical Materials; Beijing 100095
Cite this article: 

YU Huichen; SUN Yanguo; XIE Shishu; K. TANAKA. Low Cycle Fatigue Crack Propagation in Stainless Steel Under Combined Torsion and Tension. Acta Metall Sin, 2005, 41(1): 73-.

Download:  PDF(286KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Low cycle fatigue crack propagation tests were conducted on a circumferentially pre--cracked round bar of a stainless steel under various combinations of cyclic torsion and tension. The crack propagation rate was expressed as a power function of $J$ integral range for both single and mixed mode. For the same $J$--integral range, the mode I propagation rate is the highest and the mode III one is the lowest. The fatigue fracture surface is macroscopically flat under the conditions of excessive plasticity. Striations were observed on the fatigue fracture surface under mixed mode loading, and their spacing value is equal to the crack propagation rate value, the same as in mode I case.
Key words:  low cycle fatigue      crack propagation      J integral      
Received:  13 January 2004     
ZTFLH:  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/73

[1] Yu H C, Tanaka K, Akiniwa Y. Fatigue Fract Eng MaterStruct, 1998; 21: 1067
[2] Yu H C, Xie S S, Tanaka K, Akiniwa Y. J Mater Eng,2002; (Suppl.): 317(于慧臣,谢世殊,田中启介,秋庭义明.材料工程,2002;(增刊):317)
[3] Yu H C, Xie S S, Sun Y G, Tanaka K, Akiniwa Y. J Aeronaut Mater, 2004; 24(5): 53(于慧臣,谢世殊,孙燕国,田中启介,秋庭义明.航空材料学报,2004;24(5):53)
[4] Ritchie R O, McClintock F A, Tschegg E K, Hayeb-Hashemi H. ASTMSTP 853, 1985: 203
[5] Tschegg E K, Stanzl S E. ASTMSTP 924, 1988: 214
[6] McClintock, Ritchie R O. In: Mura T ed, Mechanics of Fatigue, AMD-47, New York: American Society of Mechanical Engineers, 1981: 1
[7] Tanaka K, Akiniwa Y, Nakamura H. Fatigue Fract EngMater Struct, 1996; 19: 571
[8] Itoh Y Z, Murakami T, Kasiwaya H. Eng Fract Mech,1988; 31: 967
[9] Yu H C, Xie S S, Zhang Y J, He F W, Tanaka K. J Aero-naut Mater, 2003; 23(Suppl.): 139(于慧臣,谢世殊,张岩基,贺风伟,田中启介.航空材料学报,2003;23(增刊):139)
[10] Yu H C, Xie S S, He F W, Zhang Y J. J Aerospace Power, 2004; 19(6): 197(于慧臣,谢世殊,贺风伟,张岩基.航空动力学报,2004;19(6):197)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[3] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[4] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
[5] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[6] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[7] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[8] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[9] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[10] JIANG Bing XING Xianran GUO Zhimeng. CRACK PROPAGATION AND DOMAIN SWITCHING IN BaTiO3 SINGLE CRYSTALS UNDER EXTERNAL FIELD[J]. 金属学报, 2011, 47(5): 605-610.
[11] ZHOU Yanlei XU Yang CHEN Jun LIU Zhenyu. EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL[J]. 金属学报, 2011, 47(11): 1382-1387.
[12] HUANG Zhiwei; YUAN Fuhe; WANG Zhongguang; ZHU Shijie; WANG Fugang. Low Cycle Fatigue Behavior of A Cast Nickel Base Superalloy M963 at Elevated Temperature[J]. 金属学报, 2007, 43(7): 678-682 .
[13] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[14] Chen Ling. Discussion of energy model for low cycle fatigue life prediction[J]. 金属学报, 2006, 42(2): 195-200 .
[15] YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52[J]. 金属学报, 2005, 41(4): 357-362 .
No Suggested Reading articles found!