|
|
Electric-Discharge Compaction of Nanocrystalline WC-10%Co Powders |
WU Xiyong; ZHANG Wei; WANG Wei; YANG Fei; MIN Jiayuan; GUO Jingdong |
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016 |
|
Cite this article:
WU Xiyong; ZHANG Wei; WANG Wei; YANG Fei; MIN Jiayuan; GUO Jingdong. Electric-Discharge Compaction of Nanocrystalline WC-10%Co Powders. Acta Metall Sin, 2004, 40(9): 1000-1004 .
|
Abstract WC-10%Co (mass fraction) cemented carbide with an average
grain size of 120 nm are fabricated by
means of electric-discharge compacting (EDC)
the nano-crystalline WC-10%Co powders which were
synthesized by spray conversion process
(SCP). Microstructure and mechanical properties of the cemented
carbide are investigated. Because of short
holding time during EDC, the grain growth is retarded. It is found that the dispersed
micro-size pores are contributed to the high fracture toughness of the
samples besides the bridging ligament mechanism.
|
Received: 12 August 2003
|
|
[1] Berger S, Porat R, Rosen R. Progr Mater Sci, 1997; 42: 311 [2] Bhatia S J, McCandlish L E, Kear B H. US Pat, 5 352 269, 1994 [3] McCandlish L E, Kear B H, Kim B K. Nanostruct Mater, 1992; 1: 119 [4] Sadangi R K, McCandlish L E, Kear B H, Seegopaul P. In: Oakes J H, Reinshagen J H, eds., Advances in Powder Metallurgy and Particulate Materials 1998, Vol.1, Int Conf on Powder Metallugy and Particulate Materials, Las Vegas, Nev, 1998: 51 [5] Bartha L, Atato P, Toth A L, Porat R, Berger S, Rosen A. J Adv Mater, 2000; 32: 23 [6] Cha S I, Hong S H, Kim B K. Mater Sci Eng, 2003; A351:31 [7] El-Eskandarany M S, Mahday A A. J Alloys Compd, 2000;312: 315 [8] Jia K, Fischer T E, Gallois B. Nanostruct Mater, 1998;10: 875 [9] Kishino J, Nomura H, Shin S G, Matsubara H, Tanase T.Int J Refract Met Hard Mater, 2002; 20: 31 [10] Kim S, Park J K, Lee D. Scr Mater, 1998; 38: 1563 [11] Gurland J. Trans AIME, 1954; 200: 285 [12] Kim D K, Pak H, Okazaki K. Mater Sci Eng, 1988; A104:191 [13] Okazaki K. Mater Sci Eng, 2000; A287: 189 [14] Rajagopalan P K, Desai S V, Kalghatgi R S, Krishnan TS, Bose D K. Mater Sci Eng, 2000; 280 A: 289 [15] Qiu J, Shibata T, Rock C, Okazaki K. Mater Trans JIM,1997; 38: 226 [16] Zhang Z Y, Wahlberg S, Wang M S, Muhammed M.Nanostruct Mater, 1999; 12: 163 [17] Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M. PhysRev, 1997; 56B: 13849 [18] Vasel C H, Krawitz A D, Drake E F, Kenik E A. MetallTrans, 1985; 16A: 2309 [19] Zhang W, Sui M L, Zhou Y Z, Guo J D, He G H, Li D X.J Mater Res, 2003; 18: 1543 [20] Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X. Adv EngMater, 2002; 4: 697 [21] Roebuck B, Almond E A. Int Metall Rev, 1988; 33: 90 [22] Tang D W, Zhou B L, Cao H, He G H. J Appl Phys, 1993;73: 3749 [23] Groza J R, Garcia M, Schneider J A. J Mater Res, 2001;16: 286 [24] Conrad H. Mater Sci Eng, 2000; A287: 276 [25] Ravichandran K S. Acta Metall Mater, 1994; 42: 143 [26] Kratic V D, Komac M. Philos Mag, 1985; 51A: 191 [27] Rice R W. J Mater Sci, 1996; 31: 1969 [28] Rice R W. J Mater Sci, 1996; 31: 4503 [29] Reimanis I E. Mater Sci Eng, 1997; A237: 159 [30] Bhaduri S, Bhaduri S B. Nanostruct Mater, 1997; 8: 755 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|