Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 609-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Grain Size Distribution And Topological Evolution in 2D Grain Growth Process Based on Phase Field Simulation
SUN Ya; LIU Guoquan; WANG Chao
School of Materials Science and Enginering; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

SUN Ya; LIU Guoquan; WANG Chao. Grain Size Distribution And Topological Evolution in 2D Grain Growth Process Based on Phase Field Simulation. Acta Metall Sin, 2004, 40(6): 609-.

Download:  PDF(7017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The quasi--steady state grain size distribution in the 2D grain growth process obtained by phase field method can be described well either by Weibull function or Louat distribution function, since the plots of two functions are exactly the same or very similar to each other under certain conditions. The grain side number distribution also achieves self--similarity or the quasi--steady state finally, however, it approaches a lognormal distribution instead. The relationship between the average number of grain sides and grain size appears to be nonlinear. These results agree well not only with those of high purity Al foil but also those obtained from our Monte Carlo simulation.
Key words:  grain growth      phase field simulation      grain size distribution      
Received:  20 June 2003     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/609

[1] Fayad W, Thompson C V, Frost H J. Scr Mater, 1999;40(10) : 1199
[2] Wang C, Liu G Q, Qin X G. Acta Metall Sin, 2003; 39:635(王超, 刘国权, 秦湘阁. 金属学报, 2003; 39: 635)
[3] Wang C, Liu G Q, Qin X G. ISIJ Int, 2003; 43(5) : 774
[4] Fan D N, Chen L Q. Acta Mater, 1997; 45: 611
[5] Fan D N, G Chengwei, Chen L Q. Acta Mater, 1997; 45:1115
[6] Anderson M P, Fortes M A. Philos Mag, 1989; B59: 293
[7] Wang C. PhD Dissertation, University of Science and Technology Beijing. 2003. 5(王超.北京科技大学博士学位论文, 2003)
[8] Nordbakke M W, Ryum N, Hunderi O. Acta Mater, 2002;50: 3661
[9] Beck P A. Philos Mag Suppl, 1954; 3: 245
[10] Tikare V, Holm E A, Fan D, Chen L Q. Acta Mater, 1999;47: 363
[11] Mullins W W. Acta Mater, 1998; 46: 6219
[12] Fradkov V E, Frachenko A S, Shvindlerman L S. Scr Met,1985; 19: 1291
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[3] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[4] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[5] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[6] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[7] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[9] Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 905-915.
[10] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[11] WU Huibin, WU Fengjuan, YANG Shanwu, TANG Di. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. 金属学报, 2014, 50(3): 269-274.
[12] KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[13] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[14] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[15] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
No Suggested Reading articles found!