Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (3): 305-312    DOI:
Current Issue | Archive | Adv Search |
MORPHOLOGIES AND STRUCTURES OF CHEMICAL VAPOR DEPOSITED DIAMOND FILMS AND FILM-SUBSTRATE INTERFACES
KUANG Tongchun; LIU Zhengyi(Department of Mechanical and Electric Engineering; South China University of Technology; Guangzhou 510641 )ZHOU Kesong; WANG Dezheng; DAI Mingjiang (Guangzhou Research Institute of Non-Ferrous Metals; Guangzhou 510651)
Cite this article: 

KUANG Tongchun; LIU Zhengyi(Department of Mechanical and Electric Engineering; South China University of Technology; Guangzhou 510641 )ZHOU Kesong; WANG Dezheng; DAI Mingjiang (Guangzhou Research Institute of Non-Ferrous Metals; Guangzhou 510651). MORPHOLOGIES AND STRUCTURES OF CHEMICAL VAPOR DEPOSITED DIAMOND FILMS AND FILM-SUBSTRATE INTERFACES. Acta Metall Sin, 1998, 34(3): 305-312.

Download:  PDF(4965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Polycrystalline diamond films were deposited on cemented carbide substrates using direct current plasma jet chemical vapor deposition (CVD) method. The structures, morphologies and compositions of diamond films and film-substrate interfaces have been characterized by XRD, Raman spectroscopy, SEM and EPMA. The results show that the faceted type diamond film with high crystallinity has good quality, high purity and excellent adhesion. Its film-substrate interface is dense and tortuous, and there is a significant mechanical anchoring effect between diamond film and substrate. The morphologies of substrate surfaces change greatly after deposition, there is several tens of microns in thickness cobalt-etched layer sequentially etched by plasma. The plasma etching leads to the cobalt-etched layer much rougher, which is beneficial to the diamond nucleation.
Key words:  chemical vapor deposited diamond film      interface      adhesion      morphology     
Received:  18 March 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I3/305

1姚英学, 张宏志, 袁哲俊, 黄树涛. 高技术通讯,1996; 1: 54(YaO Yingxue, Zhang Hongzhi, Yuang Zhejun, Huang Shutao. High Technol Lett, 1996; 1: 54)
2Soderberg S, Gerendas A, Sjostrand M. Vacuum, 1990; 41: 1317
3Park B S, Baik Y J, Lee K R. Diamond Relat Maten 1993; 2: 910
4Zhou Kesong, Wang Jian, Wang Desheng. Trans Non-Fermus Metals Soc Chin, 1993; 3(3): 88
5Klein C A, Cardmale G F. Diamond Relat Maten 1993; 2: 918
6Chalker P R, Jones A M, Johnston C, Buckley-Golder I M. Surf Coat Technol, 1991; 47: 365
7何崇智, 郗秀英杰, 孟庆恩, 余玉, 吕世琴. X射线衍射实验技术. 上海: 上海科学技术出版社, 1988:321(He Chognzhi, Xi Xiurong, Meng Qing'en, Tong Yukun, LU Shiqin. Eperimental TeChnique of X-rayDiffraction. Shanghai: Shanghai Press of Science and Technology 1988: 321)
8Boppart H, Straaten J V, Silvera I F. Phys Rev, 1985; B32: 1423
9Soto Y, Kamo M. Surf Coat Technol, 1989; 39/40: 183
10Cheng T K, Tyan Y Y, Ting H H, Hsu S E. J Mater Res, 1990; 5: 2515
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[3] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[4] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[5] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[8] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[9] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[10] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[11] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[12] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[13] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[14] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[15] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
No Suggested Reading articles found!