Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (2): 129-133    DOI:
Current Issue | Archive | Adv Search |
IN SITU OBSERVATION OF DISLOCATION BEHAVIOR IN PLASTIC ZONE AHEAD OF A CRACK-TIP IN A CO-BASE SUPERALLOY
LU Zheng;XU Yongbo;HU Zhuangqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Laboratory of Atomic Imaging of Solids; Institue of Metal Research; The Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

LU Zheng;XU Yongbo;HU Zhuangqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Laboratory of Atomic Imaging of Solids; Institue of Metal Research; The Chinese Academy of Sciences;Shenyang 110015). IN SITU OBSERVATION OF DISLOCATION BEHAVIOR IN PLASTIC ZONE AHEAD OF A CRACK-TIP IN A CO-BASE SUPERALLOY. Acta Metall Sin, 1998, 34(2): 129-133.

Download:  PDF(1847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  This paper presents a study of dislocation behavior in a plastic zone ahead of a crack-tip in a Co-base superalloy during in situ deformation in a TEM. The results show that the dislocations emitted from the crack-tip are partials when the tensile acs is [51]. However,when the tensile axis is [121], the dislocations from the crack-tip are perfect, which will extend during their motion toward the matrix. The stress state ahead of the crack-tip and its effect on the dislocation behavior in the plastic zone were also analysed.
Key words:  Co-base superalloy      in situ tensile      dislocation      crack-tip     
Received:  18 February 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I2/129

1Horton J A, Ohr S M. Ser Metal, 1982; 16: 621
2 Kobsyashi S, Ohr S M. Philos Mag A, 1980; 42: 763
3 Ohr S M, Narayan J. Philos Mag A, 1980; 42: 81
4Kobayashi S,Ohr S M.Scr Metall, 1981;1:343
5Kobayashi S, Ohr S M. J Mater Sci, 1984; 19: 2273
6Moral F R, Habraken L, Coutsouradis D, Drapier J M, Urbain M. Metal Eng Quart. 1969; 1:1
7 Copley S M, Kear B H. Acta Metall, 1968; 16: 227
8Peach M D, Koehler J S. Phys Rev 1950; 80: 436
9Paris P C,Sih G C.ASTM STP 381,Philadelphia:ASTM,1965:30
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!