Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (2): 150-156    DOI:
Current Issue | Archive | Adv Search |
INTERFACES IN PHASE TRANSFORMATIONS
J.W.Christian FRS(Department of Materials; Oxford University; Parks Road; Oxford OX1 3PH; UK)
Cite this article: 

J.W.Christian FRS(Department of Materials; Oxford University; Parks Road; Oxford OX1 3PH; UK). INTERFACES IN PHASE TRANSFORMATIONS. Acta Metall Sin, 1997, 33(2): 150-156.

Download:  PDF(1249KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The classification of interfaces in various kinds of phase transformation is discussed.Reconstructive phase transformations have incoherent interfaces and there is no systematic change of shape of the product region. Displacive phase transformations have fully coherent or partly coherent interfaces and are detectable by the change of shape.Fully coherent interfaces include martensitic types in which there is no change of composition and diffusional displacive interfaces in which a change of composition occurs.Both types of interface migrate by the motion of steps or ledges which are also called transformation dislocations in the martensite case. Partly coherent interfaces are also martensitic or diffusional. although examples of the latter type are rare.
Key words:  interface      martensitic transformation      bainitic transformation     
Received:  18 February 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I2/150

1 D. Hull, Bull. Inst. Met. 2 (1954) 134.
2 B.A.Bilby and J.W.Christian, The Mechamsm of Phase Transformations in Metals (The Institute of Metals, London, 1956) p. 121.
3 C.Laird and H.I.Aaronson, Acta Metall. 18 (1967) 134.
4 Y.C.Liu and H.I.Aaronson, Acta Metall. 18 (1970) 845.
5 J.M.Howe, H.I.Artonson and R.Gronsky, Acta Metall. 33 (1985) 639.
6 J.W.Christian, Proc. Roy. Soc. London A206 (1951) 51.
7 P. Gaunt and J.W.Christian, Acta Metall. 7 (1959) 529,534.
8 S.Takeuchi and T.Honma, Sci. Rep. Res. Inst. Tohoku Univ. A9 (1957) 492,509.
9 T.Waitz and H.P.Karnthaler, Private communication.
10 C.Hitzenberger and H.P.Karnthaler, Philos. Mag. A64 (1991) 151.
11 T.Waitz and H.P.Karnthaler, Philos. Mag. 1996 in course of publication.
12 H.I.Aaronson and M.G.Hall, Metall. Mater. Trans. 25A (1994) 1797.
13 J.W.Christian, Metall. Mater. Trans. 25A (1994) 1821.
14 R.D.J.Garwood, Inst. Met. 83 (1954) 64.
15 K.Marukawa, 1992: ICOMAT-92, p.821.
16 P.Doig and P.E.J.Flewitt, Met. Sci. l7 (1983) 601.
17 Y.Hamada, M.H.Wu and C.M.Wayman, l992: ICOMAT-92, p.833.
18 Q.H.Li, D.L.Liu and T.Ko, 1992: ICOMAT-92, p.845.
19 T.Ko and S.A.Cottrell, J.Iron Steel Inst. 172 (1952) 307.20 S.A.Cottrell and T.Ko, J.Iron Steel Inst. 173 (1953) 224.
21 H.K.D.H. Bhadeshia, Bainite in Steels (The Institute of Metals, London, 1995).
22 E.Swallow and H.K.D.H.Bhadeshia, In course of publication.
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[8] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[9] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[10] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[12] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[13] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[15] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
No Suggested Reading articles found!