Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (3): 269-273    DOI:
Current Issue | Archive | Adv Search |
EXPERIMENTAL STUDY OF THE ACRT EKMAN FLOW
LIU Juncheng; JIE Wanqi; ZHOU Yaohe (State Key Laboratory of Solidificatton Processing; Northwestern Polytechnical University; Xi'an 710072)(Manuscript received 1995-06- 1 9)
Cite this article: 

LIU Juncheng; JIE Wanqi; ZHOU Yaohe (State Key Laboratory of Solidificatton Processing; Northwestern Polytechnical University; Xi'an 710072)(Manuscript received 1995-06- 1 9). EXPERIMENTAL STUDY OF THE ACRT EKMAN FLOW. Acta Metall Sin, 1996, 32(3): 269-273.

Download:  PDF(348KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stability of the Ekman flow during ACRT (accelerated crucible rotation technique) process, and the effects of the crucible diameter Φ, the maximum variation of the rotation speed, △ωmax , as well as the liquid height H in the crucible on the Ekman flow,were studied with hydraulic analogue experiments. The result shows that, if Reynolds number Re ≤ ReC1(the low critical Re), the Ekman flow is stable, if Re≥ ReC2(the high critical Re), the Ekman flow during the crucible deceleration period is unstable, and the Ekman flow height h increases with increase of the crucible diameter Φ and the maximum variation of the rotation speed △ωmax . When Re≤ ReC1, the relation between the ratio h / R (R = 0.5Φ) and Re2 is linear. When the liquid height H< H(a critical value), the Ekman flow height h decreases with decrease in the liquid height H. Correspondent: LIU Juncheng, State Key Laboratory of Solidificatton Processing, Northwestern Polytechnical University, Xi'an 710072
Key words:  ACRT      convection      crystal growth     
Received:  18 March 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I3/269

1Schulz-DuboisEO.JCrystGrowth,1972;12:812CapperP,GosneyJJ,JonesCL,PesrceEJ.JElectronMater,1986;15:3613CapperP.ProgCrowthCharact,1989;19:2594刘山,惠增哲,周尧和,鲁德洋.材料研究学报,1994;8:2235ZhouJ,LarrouseM,WilcoxWR,RegelLL.JCrystGrowth,1993;128:1736CapperP,GosneyJJ,JonesCL,KenworthyI.JElectronMater,1986;15:3717BloednerRU,GilleP.JCrystGrowth,1993;130:1818JieWanqi.MetallTrans,1992;23A:13639MasalovVM,Emel'chenkoGA,MikhajlovAB.JCrystGrowth,1992;119:29710XuYibin,FanShiji.JCrystGrowth,1993;133:9511NeitzelGP,DavisSH.JFluidMesch,1981;102:329
[1] Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. 金属学报, 2018, 54(10): 1428-1434.
[2] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[3] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[4] WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi. PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION[J]. 金属学报, 2013, 49(7): 822-830.
[5] XUAN Weidong, REN Zhongming, LI Chuanjun, REN Weili, CHEN Chao, YU Zhan. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G WITH DIFFERENT SIZES[J]. 金属学报, 2012, 48(5): 629-635.
[6] SHEN Yu REN Zhongming LI Xi, REN Weili. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED Al-40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2011, 47(4): 417-422.
[7] CHANG Guowei JIN Guangcan CHEN Shuying LI Qingchun YUE Xudong. STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS[J]. 金属学报, 2011, 47(3): 380-384.
[8] LUO Liangshun ZHANG Yumin SU Yanqing WANG Xin GUO Jingjie FU Hengzhi . CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result
[J]. 金属学报, 2011, 47(3): 275-283.
[9] LUO Liangshun FU Hengzhi ZHANG Yumin LI Xinzhong SU Yanqing GUO Jingjie. CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
II. Theoretical Analysis
[J]. 金属学报, 2011, 47(3): 284-290.
[10] LU Shanping DONG Wenchao LI Dianzhong LI Yiyi. HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS[J]. 金属学报, 2010, 46(11): 1347-1364.
[11] DONG Jianwen REN Zhongming REN Weili LI Xi LI Xu. EFFECT OF HORIZONTAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY[J]. 金属学报, 2010, 46(1): 71-76.
[12] ZHAO Jiuzhou LI Haili ZHAO Lei. EFFECTS OF CONVECTIONS AND MOTIONS OF MINORITY PHASE DROPLETS ON SOLIDIFICATION OF MONOTECTIC ALLOYS[J]. 金属学报, 2009, 45(12): 1435-1440.
[13] ZHAO Jiuzhou LI Haili WANG Qingliang ZHAO Lei HE Jie. RAPID DIRECTIONAL SOLIDIFICATION OF Al-Pb ALLOY UNDER A STATIC MAGNETIC FIELD[J]. 金属学报, 2009, 45(11): 1344-1348.
[14] YANG Chaorong SUN Dongke PAN Shiyan DAI Ting ZHU Mingfang. CA--LBM MODEL FOR THE SIMULATION OF DENDRITIC GROWTH UNDER NATURAL CONVECTION[J]. 金属学报, 2009, 45(1): 43-50.
[15] . Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic[J]. 金属学报, 2008, 44(9): 1057-1062 .
No Suggested Reading articles found!