Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (14): 51-60    DOI:
Current Issue | Archive | Adv Search |
MATHEMATICAL SIMULATION OF MAGNETIC FIELD IN ESR SYSTEM
WEI Jihe(Shanghai University; 200072); REN Yongli; (Xi'an Institute of Metallurgy and Construction Engineering; 710055)(Manuscript received 94-04-27)
Cite this article: 

WEI Jihe(Shanghai University; 200072); REN Yongli; (Xi'an Institute of Metallurgy and Construction Engineering; 710055)(Manuscript received 94-04-27). MATHEMATICAL SIMULATION OF MAGNETIC FIELD IN ESR SYSTEM. Acta Metall Sin, 1995, 31(14): 51-60.

Download:  PDF(655KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mathematical simulation and its application to laboratory 200 mm diameter mould of ESR unit were developed based on Maxwell's equations and related electromagnetic field theorem. For remelting a low carbon alloy steel(an electrode of 76 mm in diameter, 3000 A current (rms) and the slag of CaF2+30 mass-% Al2O3+20 mass-% CaO system) with the parameturs selected reasonably,the amplitude magnetude of magnetic field intensity inner the electrode along the formation direction of electrode tip cone is continuously increasing to a maximum value being about 2.6×104 A/ m near the cone top, then decreasing in the slag bath, ingot pool, mushy zone and solid ingot. For a high speed steel(M2) ingot on another unit with a mould of 140 mm in diameter (80 mm diameter electrode and the slag of CaF2+CaO+Al2O3+MgO system), the predicted magnitude and profile of the magnetic field intensity in the slag bath and ingot pool of the system by the model are in pretty good agreement with the practical measurements. This model may be used as a good and reliable basis for the further study on the fluid flow and the heat and mass transfer processes in ESR system .Correspondent: WEI Jihe, professor,(Department of Materials Science and Engineering, Shanghai University,Shanghai 200072)
Key words:  electroslag remelting      magnetic field      mathematic simulation     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I14/51

1DilawariAH,SzeleklyJ.MetallTrans,1977;8B:2272DilawariAH,SzeleklyJ.Proc5thIntConfVacMet&ESRProcess,Munich,Leybold-Heraeus,1976:1573DilawariAH,SzeleklyJ.MetaIlTrans,1978;9B:774ChoudbaryM,SzekelyJ.MetallTrans,1980;11B:4395ChoudharyM,SzekelyJ.IronSteelmaking,1981;8:2256魏季和,任永莉.金属学报,1984;30:B4817魏季和,MitchellA.金属学报,1984;20:B2808魏季和,MitchellA.金属学报,1984;20:B2619,196910获野和已,原茂太.铁钢,631977:2141 11刘应书,魏季和,向顺华,任永莉.全国第五届冶金过程动力学和反应工程学学术会议论文集,中国金属学会冶金过程物理化学学会,济南,1991:259
[1] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[4] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[5] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[6] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[7] Yongli JIN,Hai YU,Jieyu ZHANG,Zengwu ZHAO. Effects of Magnetic Field on Reduction of CaOContaining Iron Oxides[J]. 金属学报, 2019, 55(3): 410-416.
[8] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[9] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[10] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[11] Sansan SHUAI, Xin LIN, Wuquan XIAO, Jianbo YU, Jiang WANG, Zhongming REN. Effect of Transverse Static Magnetic Field on Microstructure of Al-12%Si Alloys Fabricated by Powder-BlowAdditive Manufacturing[J]. 金属学报, 2018, 54(6): 918-926.
[12] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[13] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[14] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[15] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
No Suggested Reading articles found!