Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (11): 485-493    DOI:
Current Issue | Archive | Adv Search |
FORMATION AND DEVELOPMENT OF SHEAR DEFORMATION LOCALIZATION IN LOW CARBON STEELS
XU Yongbo;BAI Yilong;SHEN Letian;XUE Qing;LI Huan;KONG Dan( State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110015)(Laboratory for Non-Linear Mechanics of Continuous Media;Institute of Mechanics;Chinese Academy of Sciences;Beijing 100080)(Manuscript received 1994-10-28;in revised form 1995-04-01)
Cite this article: 

XU Yongbo;BAI Yilong;SHEN Letian;XUE Qing;LI Huan;KONG Dan( State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110015)(Laboratory for Non-Linear Mechanics of Continuous Media;Institute of Mechanics;Chinese Academy of Sciences;Beijing 100080)(Manuscript received 1994-10-28;in revised form 1995-04-01). FORMATION AND DEVELOPMENT OF SHEAR DEFORMATION LOCALIZATION IN LOW CARBON STEELS. Acta Metall Sin, 1995, 31(11): 485-493.

Download:  PDF(781KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The formation,development and microstructure of shear localization formed during dynamic high speed tornsional testing by split Hopkinson bar with a average strain rate range of 600,650 and 1500 s-1 have been investigated in low-carbon steels.The results showed that the shear localization is sensitive to the strength of the steel.The higher the strength of the steel,the earlier the shear localization occurs.The observations by TEM indicated that the formation and development of the shear localization involved a series of the crystallographic and non-crystallographic events including the dislocation emission from the interfaces between the precipitate and matrix,forming network,cell and tangled structures of the dislocations;the misorientation formation arising from the large accumulated plastic strain in a local area in the band and the growth and coalescence of the microcracks in the band leading to a sharp drop in the load-carrying capacity of the deformed material.
Key words:  deformation localization      dislocation      substructure      microcrack     
Received:  18 November 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I11/485

1ZenerC,HollomonJH.JApplPhys,1944:15:222RogersHC.AnnuRevMaterSci,1979:9:2383RechtRF.TramASME,Ser.E:JApplMeck,1964;31:1894CulverRS.In:RohdeRW,ButderBM,HollandJR,KarnesCHeds.,MetallurgicalEffectsatHighStrainRates,NewYork:PlenumPress,1973:5195BaiY.In:MeyersMA,MurLEeds.,ShookWavesandHigh-StrainRotePhenomenainMetals.NewYork:PlenumPress,1981:2776StakerMR.ActaMetall,1981;29:6837WuFH,FreundLB.JMechPhysSolids,1984;32:1198DoddB,BaiY.MaterSciTechnol,1985;1:389CliftonRJ,DuffyJ,HartleyKA,ShawkiTG.ScrMetall,1984;18:44310HartleyKA,DuffyJ,HawleyRH.JMeckPhysSolids,1987;35:28211GiovanolaJH.MechMater,1988;7:5912Me-BarY,ShechtmanD.MaterSciEng,1983;58:18113MeyersMA,WittmanCL.MetallTrans,1990;21A:315314ChoK,ChiYC,DuffyJ.MetallTrans,1990;21A:116115WittmanCL,MeyersMA,PakHR.MetallTrans,1990;21A:70716GrebeHA,PakHR,MeyersMA.MetallTrans,1985;16A:76117XuYB,WangZG,BaiYL.MaterSciEng,1989:Al14:8118XuYB,WangX,WangZG,BaiYL.ScrMetallMater,1990;24:57119BaiYL,XueQ,XuYB,ShenLT.MechMater,1994;17:15520CostinLS,DuffyJ.JEngMater,1979;101:25821HartleyKA,DuffyJ,HawleyPH.JMechPhysSolids,1987:35:28322ShawkiT,CliftonRJ,MajdaG.BrownUniversityReportNo.ARODAAG29-81-K-0121//3.198323ShawkiTJ.Ph.Thesis,BrownUniversity,198524SemiatinSL,JonasJJ.AppendixCinFormabilityandWorkabilityofMetals.PlasticInstabilityandFlowLocalization.MetalsPark,Ohio:ASM,198425张振芳,刘民治,苏会和,徐永波.金属学报,1985;21:A384T
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!