Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (4): 66-72    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF NON-PROPORTIONAL OVERLOADINGON FATIGUE CRACK GROWTH
GAO Hua;CHEN Youxuan;LI Ming;CHEN Dehai Shanghai University of Engineering Science Shanghai Dalong Machinery associate professor;Department of Materials;Shanghai University of Engineering Science;Shanghai 200051
Cite this article: 

GAO Hua;CHEN Youxuan;LI Ming;CHEN Dehai Shanghai University of Engineering Science Shanghai Dalong Machinery associate professor;Department of Materials;Shanghai University of Engineering Science;Shanghai 200051. EFFECT OF NON-PROPORTIONAL OVERLOADINGON FATIGUE CRACK GROWTH. Acta Metall Sin, 1990, 26(4): 66-72.

Download:  PDF(707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of proportional and non-proportional overloading on modeⅠ fatigue crack growth have been studied, and the influences of crack tip plasticzone, crack tip blunting as well as crack closure were discussed. The proportional(mode Ⅰ) overloading may cause more serious crack growth retardation than non-proportional (mixed mode) overloading. Therefore, for estimating fatigue life ofengineering structures to simplify a real overload which may often be non-propor-tional as a proportional one is not always safe.
Key words:  non-proportional overloading      fatigue crack growth      mixed mode loading     
Received:  18 April 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I4/66

1 高暨,龚乐年,冯玉明,肖启富.中国电机工程学报,1987;7(4) :50
2 Gao Hua, Alagok N, Brown M W, Miller K J. ASTM STP 853, 1985: 184
3 Francois H, Hubert d'Hondt, Michel T, Pineau A. ASTM STP 853, 1985: 228
4 高桦,王自强,杨成寿,周爱华.金属学报,1979;15:380
5 Aoki S, Kishimoto K, Yoshida T, Sakata M. J Mech Phys Solids, 1987; 35: 431V
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[3] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[4] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[5] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[6] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[7] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[8] . The turning point in Paris region of fatigue crack growth in titanium alloy[J]. 金属学报, 2008, 44(8): 973-978 .
[9] XIONG Ying. A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH[J]. 金属学报, 2008, 44(11): 1348-1353 .
[10] YU Huichen; ZHANG Yanji; SUN Yanguo; XIE Shishu; TANAKA Keisuke. Near Threshold Fatigue Crack Growth Behavior in Stainless Steel[J]. 金属学报, 2005, 41(7): 721-726 .
[11] CHEN Wenzhe;ZHANG Sa;QIAN Kuangwu (Department of Materials; Fuzhou University; Fuzhou 350002)GU Haicheng (Institute of Materials; Xi'an Jiaotong University; Xi'an 710049)WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE CRACK GROWTH RATES AND FATIGUE THRESHOLDS OF CENTRIFUGAL SPRAY DEPOSITED Ti-48Al-2Mn-2Nb[J]. 金属学报, 1998, 34(1): 70-74.
[12] No Author. EFFECT OF OVERLOAD OCCURENCE FREQUENCY ON FATIGUE CRACK GROWTH RATE OF STEEL A537[J]. 金属学报, 1997, 33(6): 583-587.
[13] ZHANG Guangping;WANG Zhongguang (State Key Laboratory for Fracture and Fatigue of Materials; Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015). EFFECTS OF CRYSTAL ORIENTATION AND LOAD MODE ON FATIGUE BEHAVIOR IN Ni_3Al ALLOY SINGLE CRYSTALS[J]. 金属学报, 1997, 33(10): 1009-1014.
[14] WEI Xuejun; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015); (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1995-08-23). INFLUENCE OF SUPERPOSED SMALL LOADS ON FATIGUE CRACK PREPAGATION RATE OF A537 STEEL[J]. 金属学报, 1996, 32(5): 504-509.
[15] AI Suhua;GUAN Shaoxuan(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy; of Sciences; Shenyang 110015).FENG Zemin; GE Jingyan(Northeastern University; Shenyang 110006). EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK GROWTH OF Ti_3Al-Nb ALLOYS[J]. 金属学报, 1995, 31(4): 183-190.
No Suggested Reading articles found!