H C O 3 - ,deaeration corrosion," /> H C O 3 - ,deaeration corrosion,"/> H C O 3 - ,deaeration corrosion,"/> 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响<sup>*</sup>
Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 275-284    DOI: 10.3724/SP.J.1037.2013.00497
Current Issue | Archive | Adv Search |
ACTIVE/PASSIVE BEHAVIOR OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION
WEN Huailiang1,2, DONG Junhua2(), KE Wei2, CHEN Wenjuan2, YANG Jingfeng2, CHEN Nan2
1 College of Chemical and Materials Science, University of Science and Technology of China, Hefei 230026
2 State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WEN Huailiang, DONG Junhua, KE Wei, CHEN Wenjuan, YANG Jingfeng, CHEN Nan. ACTIVE/PASSIVE BEHAVIOR OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION. Acta Metall Sin, 2014, 50(3): 275-284.

Download:  HTML  PDF(9115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a kind of clean, efficient and relatively safe energy, nuclear energy has been widely used around the world. The high-level radioactive waste (HLRW) generated in the nuclear has also become a major risk, so the disposal safety of HLRW will be especially important. The planned concept of China's HLRW disposal program is a shaft-tunnel model located in saturated zones in granite. The metal container for sealing the HLRW is the key because its interaction with the ground water will lead to the leak of the HLRW during the long repository time. Beishan is a selected repository area and the ground water contains a bicarbonate (H C O 3 - ) buffer solution. Therefore, as a candidate material of the container, the active/passive state of low carbon steel in the ground water with is of significance, which determines the container's service life. The active state will ensure that the container achieves the designed life under general corrosion, and moreover the passive state will degrade the container's life under stress corrosion cracking (SCC) caused by pitting corrosion. In this work, the effect of H C O 3 - on the corrosion behavior of low carbon steel was examined in deaerated bicarbonate solutions (pH 8.3) over 50 d. The presence of H C O 3 - enhanced both the anodic Fe dissolution and cathodic hydrogen evolution reaction. The situ-measurement of corrosion potential revealed that the increased concentration of H C O 3 - led to the high corrosion potential. When the concentration of H C O 3 - was 0.01 mol/L, the corrosion potential was in the active region. When the concentration of H C O 3 - was higher than 0.02 mol/L, the corrosion potential was in the passive region. EIS results showed that the charge transfer resistance, film resistance and the diffusion impedance increased with the increasing H C O 3 - concentration. Results of XRD analysis illustrated that the key corrosion products were mainly composed of Fe3O4 and α-FeOOH.

Key words:  low carbon steel      passive/active      high-level radioactive waste disposal      H C O 3 - ')" href="#">H C O 3 -       deaeration corrosion     
Received:  18 August 2013     
ZTFLH:  TF777.1  
Fund: Supported by National Natural Science Foundation of China (No.51071160)
Service
E-mail this article H C O 3 - |deaeration corrosion”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract22115.shtml" name="neirong"> H C O 3 - |deaeration corrosion">
Add to citation manager
E-mail Alert
RSS
Collect articles0
Articles by authors
Huailiang WEN
Junhua DONG
Wei KE
Wenjuan CHEN
Jingfeng YANG
Nan CHEN

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00497     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/275

Figure 1.  Polarization curves of low carbon steel in 0.01 mol/L(a), 0.02 mol/L (b), 0.05 mol/L (c) and 0.1 mol/L (d)deaerated H C O 3 - solutions
Figure 2.  Evolution of open circuit potential in 0.01 mol/L(a), 0.02 mol/L (b), 0.05 mol/L (c) and 0.1 mol/L (d)deaerated H C O 3 - solutions
Figure 3.  Measured EIS results of low carbon steel in 0.01 mol/L H C O 3 - deaerated solutions (ZIm—imaginative part of electrochemical impedance, ZRe—real part of electrochemical impedance, f—frequency, Z—impedance)

(a) ZIm-ZRe (b) Z-f (c) phase angle-f

Figure 4.  Measured EIS results of low carbon steel in 0.02 mol/L H C O 3 - deaerated solutions

(a) ZIm-ZRe (b) Z-f (c) phase angle-f

Figure 5.  Measured EIS results of low carbon steel in 0.05 mol/L H C O 3 - deaerated solutions (Inset in Fig.5a shows the enlarged view)

(a) ZIm-ZRe (b) Z-f (c) phase angle-f

Figure 6.  Measured EIS results of low carbon steel in 0.1 mol/L H C O 3 - deaerated solutions

(a) ZIm-ZRe (b) Z-f (c) phase angle-f

Figure 7.  Equivalent circuit for fitting the EIS data (Qp—capacitance caused by high frequency phse shift, Rs—solution resistance, Qr—rust capacitance, Rr—real part of electrochemical impedance, Qdl—double layer capacitance, Rct—charge transfer resistance, W—Warburg impedance)
Time / d Yr
mS·sn·cm-2
nr Rr
Ω· cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.33 0.7 3.4 -
5 0.28 0.5 2.7×10-5 0.11 1.0 6.7 -
14 0.11 1.0 15 0.33 0.5 6.9 -
27 0.14 1.0 46 0.52 0.5 6.6 -
33 0.66 0.8 62 0.83 0.2 6.9 -
59 1.40 0.9 89 3.60 0.6 7.1 120
Table 1  Fitting results for EIS plots in 0.01 mol/L H C O 3 - solution
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.34 0.7 2.2 -
23 0.21 1.0 26 6.00 0.5 1.0 0.60
29 0.13 1.0 31 5.50 0.6 1.6 0.32
35 0.27 1.0 38 5.00 0.6 1.9 1.30
39 1.10 0.7 71 5.50 0.6 1.9 4.0×10-3
Table 2  Fitting results for EIS plots in 0.02 mol/L H C O 3 - solution
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.35 0.7 2.4 -
5 0.12 0.9 0.06 0.28 0.6 2.6 -
23 0.43 0.8 5.90 0.60 0.6 2.8 5.6×10-5
39 0.35 0.7 22.0 0.19 0.6 2.4 2.1×10-4
46 0.07 1.0 34.0 0.47 0.6 1.9 1.7×10-4
52 0.07 1.0 48.0 0.72 0.7 1.5 3.4×10-4
Table 3  Fitting results for EIS plots in 0.05 mol/L H C O 3 - solution
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.29 0.8 3.90 -
9 0.16 0.5 1 0.34 1.0 4.70 -
23 0.07 1.0 11 1.40 0.6 2.00 4.9×10-7
26 0.13 1.0 22 1.40 0.7 0.15 1.7×10-17
41 0.20 1.0 40 1.20 0.7 0.17 1.0×10-16
48 0.76 0.7 53 0.59 0.7 0.18 1.0×10-17
Table 4  Fitting results for EIS plots in 0.1 mol/L H C O 3 - solution
[1] Wang J, Su R, Chen W M, Guo Y H, Jin Y X, Wen Z J, Liu Y M. Chin J Rock Mech Eng, 2006; 25: 649
(王 驹, 苏 锐, 陈伟明, 郭永海, 金远新, 温志坚, 刘月妙. 岩石力学与工程学报, 2006; 25: 649)
[2] Gordon G M. Corrosion, 2002; 58: 811
[3] King F, Padovani C. Corros Eng Sci Technol, 2011; 46: 82
[4] Saheb M, Neff D, Dillmann P, Matthiesen H, Foy E. J Nucl Mater, 2008; 379: 118
[5] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321
(阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[6] Taniguchi N, Honda A, Ishikawa H. MRS Symp Process, 1998; 506: 495
[7] Thomas J G N, Nurse T J, Walker R. Br Corros J, 1970; 5(2): 87
[8] Armstrong R D, Coates A C. J Electroanal Chem, 1974; 50: 303
[9] Castro E B, Valentine C R, Monia C A, Vilche J R, Arvia A J. Corros Sci, 1986; 26: 781
[10] Castro E B, Vilche J R, Arvia A J. Corros Sci, 1991; 32: 37
[11] Rozenfeld J L. Atmospheric Corrosion of Metals. Houston: NACE, 1972: 1
[12] Féron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[13] Videm K, Dugstad A. Mater Perform, 1989; 28(4): 46
[14] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[15] Valentini C R, Moina C A, Vilche J R, Arvia A J. Corros Sci, 1985; 25: 985
[16] Wersin P, Spahin K, Bruno J. SKB Technical Report (9402). Stockholm: Swedish Nuclear Fuel and Waste Management Co., 1994: 1
[17] Smart N R, Blackwood D J, Werme L. Corrosion, 2002; 58: 547
[18] Smart N R, Blackwood D J, Werme L. Corrosion, 2002; 58: 627
[19] Reardon E J. Environ Sci Technol, 1995; 29: 2936
[20] Dong J H, Nishimura T, Kodama T. MRS Symp Process, 2002; 713: 105
[21] Nishimura T, Dong J H. J Power Energy System, 2009; 3: 23
[22] Azoulay I, Rémazeilles C, Refait P. Corros Sci, 2012; 58: 229
[23] Marsh G P, Taylor K J, Bland I D, Westcott C, Tasker P W, Sharland S M. MRS Symp Process, 1985; 50: 421
[24] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 59: 270
[25] Cox B, Wong Y M. J Nucl Mater, 1995; 218: 324
[26] Orazem M E, Tribollet B. Electrochemical Impedance Spectroscopy. New York: John Wiley & Sons, 2008: 246
[27] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 88
(曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 88)
[28] Almeida E, Morcillo M, Rosales B M, Marrocos M. Mater Corros, 2000; 51: 859
[29] Yamashita M, Miyuki H, Nagaro H, Misawa T. Corros Sci, 1994; 36: 283
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[3] HOU Ziyong XU Yunbo WU Di. RECRYSTALLIZATION OF ULTRA-LOW CARBON STEEL SHEET AFTER ULTRA-RAPID ANNEALING[J]. 金属学报, 2012, 48(9): 1057-1066.
[4] REN Yongqiang XIE Zhenjia SHANG Chengjia. REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL[J]. 金属学报, 2012, 48(9): 1074-1080.
[5] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[6] ZHANG Peng ZHANG Fucheng WANG Tiansheng. PREPARATION AND MICROSTRUCTURE OF HARD BAINITE IN SURFACE LAYER OF CARBURIZED 20CrMnMoAl STEEL[J]. 金属学报, 2011, 47(8): 1038-1045.
[7] YANG Jingfeng DONG Junhua KE Wei CHEN Nan. INFLUENCE OF pH VALUES AND CORROSION PRODUCTS ON LOW CARBON STEEL CORROSION SUSCEPTIBILITY IN BORATE BUFFER SOLUTION[J]. 金属学报, 2011, 47(2): 152-156.
[8] YANG Jingfeng DONG Junhua KE Wei. EFFECTS OF SO42− AND Cl ON ACTIVE/PASSIVE CORROSION BEHAVIORS OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION[J]. 金属学报, 2011, 47(10): 1321-1326.
[9] LIU Guangzhou WANG Jianming ZHANG Jianqing CAO Chunan. EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON CORROSION BEHAVIOR OF TANK STEEL[J]. 金属学报, 2010, 46(9): 1093-1097.
[10] ZHANG Changli Michel Bellet Manuel Bobadilla SHEN Houfa LIU Baicheng. FINITE ELEMENT MODELLING OF TENSILE TEST FOR MICRO–ALLOYED LOW CARBON STEEL AT HIGH TEMPERATURE[J]. 金属学报, 2010, 46(10): 1206-1214.
[11] CUI Guibin GUO Hui YANG Shanwu HE Xinlai. INFLUENCE OF INTERFACE BETWEEN GRAIN BOUNDARY FERRITE AND PRIOR AUSTENITE ON BAINITE TRANSFORMATION IN A LOW CARBON STEEL[J]. 金属学报, 2009, 45(6): 680-686.
[12] Zhi-Gang YANG; Chao WANG Qi. A THEORETICAL ANALYSIS ON EFFECT OF DEFORMATION ABOVE Ae3 TO THE NUCLEATION OF PROEUTECTOID FERRITE TRANSFORMATION[J]. 金属学报, 2007, 43(4): 344-348 .
[13] ZHAO Heshan; LI Dianzhong; LIU Zhaoxia; LI Yiyi. INVESTIGATION ON DIFFUSION OF CARBON ATOMS AND STABILITY OF DEFORMATION INDUCED FERRITE IN A LOW CARBON STEEL[J]. 金属学报, 2007, 43(3): 286-290 .
[14] . [J]. 金属学报, 2007, 43(10): 1091-1095 .
[15] . [J]. 金属学报, 2007, 43(10): 1096-1100 .
No Suggested Reading articles found!