Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 559-565    DOI: 10.3724/SP.J.1037.2010.00650
论文 Current Issue | Archive | Adv Search |
XRD LINE PROFILE ANALYSIS OF LY12 ALUMINUM ALLOY UNDER DYNAMIC COMPRESSIVE EXPERIMENT
FAN Zhijian1), SONG Zhenfei2), XIAO Dawu2), CHEN Bo1)
1) Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
2) Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
Cite this article: 

FAN Zhijian SONG Zhenfei XIAO Dawu CHEN Bo. XRD LINE PROFILE ANALYSIS OF LY12 ALUMINUM ALLOY UNDER DYNAMIC COMPRESSIVE EXPERIMENT. Acta Metall Sin, 2011, 47(5): 559-565.

Download:  PDF(1002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The plastic deformation of metals under dynamic loading is related to the evolution of dislocation structure and density which is thermal activation-dependent. The dynamic compressive experiment on LY12 aluminum alloy has been performed by Hopkinson bar at different temperatures. X-ray diffraction line profile analysis is adopted for the tested specimens to investigate the micro-and/or meso-scale structure evolution. The edge character of dislocations in the specimens was determined by analyzing the integral breadths of X-ray diffraction lines. The Fourier analysis of diffraction lines indicates that under dynamic loading, the dislocation density approaches to saturation rapidly at the initial stage of plastic deformation, dislocations are homogeneously distributed in the specimens. It also demonstrates that the dislocation density decreases with increasing testing temperature. Meanwhile the size of substructures has a tendency of broadening with temperature, especially in the range from 280℃ to 300℃ which corresponds to the temperature of dissolution of precipitated phase in the aluminum matrix.
Key words:  LY12 aluminum alloy      line profile analysis      dislocation     
Received:  03 December 2010     
ZTFLH: 

O799

 
Fund: 

Supported by Science and Technology Foundation of China Academy of Engineering Physics (No.2010A0103002) and Innovation Foundation of Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (No.2009CX01)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00650     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/559

[1] Wilkens M. Krist Technol, 1976; 11: 1159

[2] Langford J I, Lou¨er D, Scardi P. J Appl Cryst, 2000; 33: 964

[3] Scardi P, Leoni M. Acta Cryst, 2001; 57A: 604

[4] Ung´ar T, Gubicza J, Rib´arik G, Borb´ely A. J Appl Cryst, 2001; 34: 298

[5] Williamson G K, Hall W H. Acta Metall, 1953; 1: 22

[6] Klug H P, Alexander L E. X–Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley, 1974: 634

[7] Balzar D, Popovi´c S. J Appl Cryst, 1996; 29: 16

[8] Warren B E, Averbach B L. J Appl Phys, 1950; 21: 595

[9] Warren B E. X–Ray Diffraction. Reading: Addison–Wesley, 1969: 264

[10] Stephens P W. J Appl Cryst, 1999; 32: 281

[11] Popa N C. J Appl Cryst, 1998; 31: 176

[12] Krivoglaz M A, Ryaboshapka K P. Phys Met Metallogr, 1963; 15: 18

[13] Krivoglaz M A, Martynenko O V, Ryaboshapka K P. Phys Met Metallogr, 1983; 55: 318

[14] Krivoglaz M A. X–Ray and Neutron Diffraction in Nonideal Crystals. New York: Springer–Verlag, 1996: 357

[15] Wilkens M. Phys Status Solidi, 1970; 2A: 359

[16] Wilkens M. In: Simmons J A, De Wit R, Bullough R, eds., Fundamental Aspects of Dislocation Theory National Bureau of Standards Special Publication 317(II).Washington DC: National Bureau of Standards, 1970: 1195

[17] Wilkens M. Phys Status Solidi, 1987; 104A: K1

[18] Klimanek P, Kuzel R. J Appl Cryst, 1988; 21: 59

[19] Kuzel R, Klimanek P. J Appl Cryst, 1988; 21: 363

[20] Ung´ar T, Tichy G. Phys Status Solidi, 1999; 171A: 425

[21] Gubicza J, Kassem M, Rib´arik G, Ung´ar T. Mater Sci Eng, 2004; A372: 115

[22] F´atay D, Bastarash E, Nyilas K, Dobatkin S, Gubicza J, Ung´ar T. Z Metall, 2003; 94: 1

[23] Ung´ar T, Borb´ely A. Appl Phys Lett, 1996; 69: 3173

[24] De Keijser T H, Langford J I, Mittemeijer E J, Vogels A B P. J Appl Cryst, 1982; 15: 308

[25] Thompson P, Cox D E, Hastings J B. J Appl Cryst, 1987; 20: 79

[26] Dieter G E. Mechanical Metallurgy. New York: McGraw–Hill, 1988: 58

[27] Ung´ar T. Mater Sci Eng, 2001; A309–310: 14

[28] Ung´ar T, Tichy G, Gubicza J, Hellming R J. Powder Diffr, 2005; 20: 366

[29] Ung´ar T, Gubicza J, Han´ak P, Alexandrov I. Mater Sci Eng, 2001; A319–321: 274

[30] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 5: 103

[31] Estrin Y, Molinari, Toth L S, Brechet Y. Acta Mater, 1998; 46: 5509

[32] Arzt E, Ashby M F, Verrall R A. Acta Metall, 1983; 31: 1977

[33] Brammer J A, Percival C M. Exp Mech, 1970; 10(6): 245
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!