Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 875-886    DOI: 10.11900/0412.1961.2023.00330
Research paper Current Issue | Archive | Adv Search |
Effects of Solution Aging on Microstructural Evolution and Mechanical Properties of Laser Deposition Repairing ZM6 Alloy
QIN Lanyun1, ZHANG Jian1, YI Junzhen2,3(), CUI Yanfeng4, YANG Guang1(), WANG Chao3
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
3 Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
4 AECC Harbin Dongan Engine Co. Ltd., Harbin 150066, China
Cite this article: 

QIN Lanyun, ZHANG Jian, YI Junzhen, CUI Yanfeng, YANG Guang, WANG Chao. Effects of Solution Aging on Microstructural Evolution and Mechanical Properties of Laser Deposition Repairing ZM6 Alloy. Acta Metall Sin, 2025, 61(6): 875-886.

Download:  HTML  PDF(6064KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZM6 (Mg-Nd-Zn-Zr) alloy is a typical casting magnesium alloy with low density, high specific strength and stiffness, good vibration damping performance, good machinability, and good heat resistance. It is widely used in aerospace and aviation fields. However, metallurgical or machining defects are inevitable while processing due to the complicated shapes and large scales of aviation components. Failure to repair them may lead to significant economic loss. Laser deposition repair can be applied to aerospace components because of the advantages of small heat input and high molding accuracy. This work focuses on repairing the aerospace ZM6 magnesium alloy components using laser deposition, addressing the metallurgical defects and service damage to the components. The changes in the microstructure and mechanical properties of the repaired ZM6 samples before and after solution aging (T6: 520 oC, 8 h + 220 oC, 14 h) treatment were compared. The results show that the microstructure of the repaired zone of the as-deposited sample consists of fine α-Mg grains. The secondary phases distributed mainly at grain boundaries showed a continuous network, and a small number of the dot- and rod-shaped secondary phases were distributed inside Mg grains. The average hardness of the repaired zone is (60 ± 2) HV0.1, and the tensile strength, yield strength, and elongation were 137.47 MPa, 111.61 MPa, and 5.57%, respectively. The fracture occurred in the base metal, and the tensile fracture mode comprised transgranular and intergranular brittle fractures. After T6 treatment, the microstructure of the repaired zone comprised fine α-Mg grains and abnormally coarse grains, and β′ phase was precipitated inside the grains. The average hardness of the repaired zone increased by 17.5% compared to that of the as-deposited samples, and the abnormally coarse and fine grains led to various hardness fluctuations. The tensile strength and yield strength of the T6-treated samples increased by 49.8% and 75.6%, respectively, but the elongation decreased. The fracture location of the tensile sample was in the repaired zone because of the formation of abnormally coarse grains.

Key words:  laser deposition repairing      ZM6 alloy      solution aging      abnormally coarse grain      mechanical property     
Received:  10 August 2023     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2022YFE0122600);China Aero Engine Group Industry University Research Cooperation Project(HFZL2021CXY025-1);Liaoning Province Department of Education Fund(JYT2020061);Open Fund of Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University(SHSYS202001)
Corresponding Authors:  YI Junzhen, associate professor, Tel: 18004024448, E-mail: jzyi@sau.edu.cn;
YANG Guang, professor, Tel: 18040037100, E-mail: yangguang@sau.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00330     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/875

Fig.1  Schematic of the ZM6 alloy plate with a trapezoidal groove (unit: mm)
Fig.2  Schematic of laser deposition manufacturing system
Fig.3  Schematics of the laser deposition repairing (LDR) process (a), sampling location (b), and dimension (c) for tensile sample (unit: mm)
Fig.4  OM image (a), grain diameter distribution (b), SEM image (c), and EDS analyses (d) of ZM6 alloy substrate (Dave—average of grain diameter)
Fig.5  OM image of LDR sample (a), low (b) and high (c) magnified SEM images around the fusion line, grain diameter distribution in RZ (d), and EDS analyses (e) (RZ—repaired zone, HAZ—heat-affected zone, BM—base material)
Fig.6  OM image around the fusion line of the LDR-T6 sample (ACG—abnormally coarse grain) (a), grain diameter distribution in RZ (b), SEM image in RZ (Insets is the high magnified SEM image) (c), and EDS analyses (d)
Fig.7  XRD spectra of the RZ in LDR and LDR-T6 samples
Fig.8  Microhardness distributions of different zones in LDR and LDR-T6 samples
Fig.9  Engineering stress-strain curves (a) and tensile properties (b) of BM, LDR, and LDR-T6 samples at room temperature (Insets in Fig.8a show the fracture positions; FZ—fusion zone; UTS—ultimate tensile strength, YS—yield strength, EL—elongation)
Fig.10  Low (a, c) and high (b, d-f) magnified SEM images showing facture surfaces of LDR (a, b) and LDR-T6 (c-f) samples (GB—grain boundary)
Fig.11  Cross-sectional OM images showing fractures of LDR (a) and LDR-T6 (b) samples
Fig.12  Inverse pole figures (IPFs) of RZ in LDR (a) and LDR-T6 (b) samples and region around fusion line of LDR-T6 sample (c), kernel average misorientation (KAM) map of RZ (d), and SEM image of LDR sample (e)
Fig.13  Grain boundary distribution maps of RZ in LDR (a) and LDR-T6 (b) samples and the corresponding misorientation statistical diagram (c)
Fig.14  Schematics of fracture mechanisms of the LDR (a) and LDR-T6 (b) samples
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
3 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
4 Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
5 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
6 Tang W N, Mo N, Hou J, et al. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
7 Cheng B, Mao C, Zhang M J, et al. Comparative study on microstructure and properties of laser welding and argon arc welding Hastelloy C-276/SS304 with filler wire [J]. Opt. Laser Technol., 2023, 164: 109565
8 Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
doi: 10.1016/j.jmst.2020.01.003
9 Lin X, Cao Y Q, Wu X Y, et al. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel [J]. Mater. Sci. Eng., 2012, A553: 80
10 Smail B S, Cailloux T, Quinsat Y, et al. Integrated approach to stainless steel 316L parts repair for pitting corrosion using laser metal deposition [J]. J. Manuf. Processes, 2023, 95: 1
11 Yan W G, Zeng W, Man J X, et al. Microstructure and mechanical properties of a directionally solidified superalloy DZ411 plate sample repaired by laser melting deposition [J]. Mater. Sci. Eng., 2023, A876: 145141
12 Wang Z D, Yang K, Chen M Z, et al. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique [J]. Mater. Sci. Eng., 2022, A831: 142
13 Qin L Y, Pang S, Yang G, et al. Microstructure and micro-hardness of laser deposition repair ZL114A aluminum alloy [J]. Infrared Laser Eng., 2017, 46: 0506004
钦兰云, 庞 爽, 杨 光 等. 激光沉积修复ZL114A铝合金的显微组织及显微硬度研究 [J]. 红外与激光工程, 2017, 46: 0506004
14 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
15 Dai J, Huang J, Li M, et al. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K [J]. Mater. Sci. Eng., 2011, A529: 401
16 Singh K. Effect of post-welding heat treatment on mechanical and microstructural properties of friction stir welded dissimilar magnesium alloys [J]. Mater. Today Proc., 2023, doi: 10.1016/j.matpr.2023.02.133
17 Tong X, Zhang G, Wu G H, et al. Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Charact., 2021, 176: 111125
18 Zhang G Q, Tong X, Wu G H, et al. Research on the post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Sci. Eng., 2021, A821: 141577
19 Yang G, Zhang W Q, Zhang J, et al. Evolution of microstructure of WE43 magnesium alloys fabricated by laser deposition manufacturing with subsequent friction stir processing [J]. Mater. Lett., 2023, 330: 133218
20 Jiao X Y, Li X J, Zhan L Q, et al. The Microstructural evolution and grain growth kinetics of fine-grained extruded Mg-Nd-Zn-Zr alloy [J]. Materials (Basel), 2022, 15: 3556
21 Ning Z L, Cao F Y, Liu H H, et al. Microstructure analysis of Mg-2.54Nd-0.26Zn-0.32Zr alloy [J]. Rare. Met. Mater. Eng., 2009, 38: 1997
宁志良, 曹福洋, 刘洪汇 等. Mg-2.54Nd-0.26Zn-0.32Zr合金组织分析 [J]. 稀有金属材料与工程, 2009, 38: 1997
22 Ning Z L, Liu H H, Cao F Y, et al. The effect of grain size on the tensile and creep properties of Mg-2.6Nd-0.35Zn-xZr alloys at 250 °C [J]. Mater. Sci. Eng., 2013, A560: 163
23 Gao M, Wang H K, Hao K D, et al. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation [J]. J. Manuf. Processes, 2019, 45: 92
24 Lei Z L, Bi J, Li P, et al. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy [J]. Opt. Laser Technol., 2018, 105: 15
25 Harooni M, Carlson B, Strohmeier B R, et al. Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration [J]. Mater. Des., 2014, 58: 265
26 Fu P H, Peng L M, Jiang H Yet al. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Mater. Sci. Eng., 2008, A486: 183
27 Chen R N, Chen Q H, Peng P, et al. Abnormal grain growth induced by <1120> orientation of AZ31 magnesium alloy [J]. Mater. Sci. Technol., 2023, 39: 1337
28 Pei R S, Korte-Kerzel S, Al-Samman T. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50: 257
doi: 10.1016/j.jmst.2020.01.014
29 Tang J W, Chen L, Li Z G, et al. Formation of abnormal coarse grains and its effects on corrosion behaviors of solution treated ZK60 Mg alloy [J]. Corros. Sci., 2021, 180: 109201
30 Kim H J, Jin S C, Jung J G, et al. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71: 87
doi: 10.1016/j.jmst.2020.08.056
31 Lezaack M B, Simar A. Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments [J]. Mater. Sci. Eng., 2021, A807: 140901
32 Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
33 Qin L Y, Pang S, Yang G, et al. Microstructure and mechanical property analysis of ZL114A aluminum alloy repaired by laser deposition [J]. Infrared Laser Eng., 2016, 43: 108
钦兰云, 庞 爽, 杨 光 等. 激光沉积修复ZL114A铝合金组织和力学性能分析 [J]. 中国激光, 2016, 43: 108
34 Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
[1] LI Fushun, LIU Zhipeng, DING Cancan, HU Bin, LUO Haiwen. Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel[J]. 金属学报, 2025, 61(6): 909-916.
[2] MENG Xianglong, LIU Ruiliang, Li D. Y.. First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys[J]. 金属学报, 2025, 61(5): 797-808.
[3] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[4] CAI Zhengqing, YIN Dawei, YANG Liang, WANG Wenxiang, WANG Feilong, WEN Yongqing, MA Mingzhen. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys[J]. 金属学报, 2025, 61(4): 572-582.
[5] YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. 金属学报, 2025, 61(4): 561-571.
[6] SUN Jun, LIU Gang, YANG Chong, ZHANG Peng, XUE Hang. Heat-Resistant Al Alloys: Microstructural Design and Preparation[J]. 金属学报, 2025, 61(4): 521-525.
[7] OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. 金属学报, 2025, 61(3): 455-474.
[8] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[9] PANG Mengyao, WU Ruizhi, MA Xiaochun, JIN Siyuan, YU Zhe, Boris Krit. Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. 金属学报, 2025, 61(3): 509-520.
[10] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[11] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[12] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[13] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[14] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[15] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
No Suggested Reading articles found!