Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 154-166    DOI: 10.11900/0412.1961.2022.00309
Research paper Current Issue | Archive | Adv Search |
In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy
TAN Zihao1,2, LI Yongmei1,2, WANG Xinguang1(), ZHAO Haochuan3, TAN Haibing3, WANG Biao3, LI Jinguo1, ZHOU Yizhou1, SUN Xiaofeng1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Institute of Sichuan Gas Turbine Research, Aero Engine Corporation of China, Chengdu 610500, China
Cite this article: 

TAN Zihao, LI Yongmei, WANG Xinguang, ZHAO Haochuan, TAN Haibing, WANG Biao, LI Jinguo, ZHOU Yizhou, SUN Xiaofeng. In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy. Acta Metall Sin, 2024, 60(2): 154-166.

Download:  HTML  PDF(5938KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the service, the turbine blades of aero-engines are subjected to a complex and ever-changing combination of temperature and stress, resulting in severe cyclic temperature/strain damages and thermal-mechanical fatigue (TMF) failures of the alloy. In this work, in-phase (IP) TMF tests under 600-1000oC were conducted on a newly developed fourth-generation single-crystal superalloy. The alloy's fracture characteristics and comprehensive damage mechanisms were examined via SEM, EBSD, and TEM. The results showed that when the strain range increased, the fatigue life of the experimental alloy noticeably decreased, and the hysteresis loop clearly opened. Stress response behaviors shifted from cyclic softening at high temperatures and cyclic hardening at low temperatures into a dominant characteristic of cyclic stabilizing. The fracture surfaces of alloys displayed ductile features after fatigue fracture under various circumstances, and the area fraction of dimples reduced with increasing strain amplitude. When the strain amplitude was low, the alloy was mainly subjected to oxidation damage, accompanied with a certain degree of creep damage. In contrast, the dominant deformation mechanism of the alloy was dislocation slipping in γ matrix and Orowan by-passing through γ' particles. As the strain amplitude increased to higher levels, the alloy was subjected to severe plastic deformation damage, while the degree of oxidation damage had been alleviated. Under this condition, the interfacial dislocations could shear into the γ' phase with the generated stacking fault or anti-phase boundary. Notably, no recrystallization grains or deformation twins were formed in the DD91 alloy during the IP-TMF experiments at different mechanical strain amplitudes.

Key words:  fourth-generation single-crystal superalloy      thermal-mechanical fatigue      fracture characteristic      oxidation behavior      damage mechanism     
Received:  22 June 2022     
ZTFLH:  TG132.32  
Fund: National Science and Technology Major Project(2017-VI-0002-0072);National Key Research and Development Program of China(2017YFA0700704);Program of CAS Interdisciplinary Innovation Team and Youth Innovation Promotion Association
Corresponding Authors:  WANG Xinguang, professor, Tel: (024)23971887, E-mail: xgwang11b@imr.ac.cn;
SUN Xiaofeng, professor, Tel: (024)23971807, E-mail: xfsun@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00309     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/154

Fig.1  Schematic of the standard heat treatment regimens of DD91 alloy (AC—air cooling, A1—primary aging, A2—secondary aging)
Fig.2  Schematic illustration of the experimental thermal-mechanical fatigue specimen (unit: mm)
Fig.3  γ /γ' structure of the DD91 alloy after standard heat treatment
Fig.4  Cyclic stress response curves of the DD91 alloy during in-phase thermomechanical fatigue (IP-TMF) at strain amplitudes of 0.5% (a), 0.6% (b), 0.8% (c), and 0.9% (d) (N—cycle number, σmax—maximum stress, σmean—mean stress, σmin—minimum stress)
Fig.5  Typical hysteresis loops of first cycle and steady stage of the DD91 alloy during IP-TMF at mechanical strain amplitudes of 0.5% (a), 0.6% (b), 0.8% (c), and 0.9% (d)
Fig.6  SEM images in (011) plane of the DD91 alloy after IP-TMF fracture at mechanical strain amplitudes of 0.5% (a), 0.6% (b), 0.8% (c), and 0.9% (d) (σ—cyclic stress)
Fig.7  Surface crack morphologies (a1-d1) and corresponding inverse pole figures (IPFs) (a2-d2), kernel average misorientation (KAM) maps (a3-d3), and grain reference orientation deviation (GROD) maps (a4-d4) of DD91 alloy after IP-TMF fracture at strain amplitudes of 0.5% (a1-a4), 0.6% (b1-b4), 0.8% (c1-c4), and 0.9% (d1-d4)
Fig.8  SEM images of fracture characteristics of DD91 alloy after IP-TMF fracture failure at mechanical strain amplitudes of 0.5% (a), 0.6% (b), 0.8 (c), and 0.9% (d) (Insets show the typical magnified fracture features at each condition)
Fig.9  Characteristics of the outer fracture surfaces (a, c, e, g) and surface oxidations (b, d, f, h) in DD91 alloy after IP-TMF fracture at strain amplitudes of 0.5% (a, b), 0.6% (c, d), 0.8% (e, f), and 0.9% (g, h) (Insets show magnified images of oxides)
Fig.10  EDS analyses of the oxidized DD91 alloy surfaces after IP-TMF fracture at strain amplitudes of 0.5% (a) and 0.8% (b)
Fig.11  Typical dislocation configurations of the DD91 alloy after IP-TMF fracture at strain amplitudes of 0.5% (a), 0.6% (b), 0.8% (c), and 0.9% (d) (Insets show magnified images of special configurations. APB—anti-phase boundary, K-W—Kear-Wilsdorf)
Strain amplitude %Maximum crack size on outer surface / μm

Number of internal crack

(Within 1 mm from crack surface)

0.5210.9232 ± 3
0.6151.4235 ± 4
0.827.2958 ± 5
0.949.1088 ± 7
Table 1  Maximum crack sizes on outer surface and numbers of internal crack of the DD91 alloy after IP-TMF fracture at different strain amplitudes
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 20
2 Li J R, Dong J M, Han M, et al. Effects of sand blasting on surface integrity and high cycle fatigue properties of DD6 single crystal superalloy [J]. Acta Metall. Sin., 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
李嘉荣, 董建民, 韩 梅 等. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响 [J]. 金属学报, 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
3 Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1109
doi: 10.11900/0412.1961.2023.00140
张 健, 王 莉, 谢 广 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2023, 59: 1109
4 Xu J H, Li L F, Liu X G, et al. Thermal-stress coupling effect on microstructure evolution of a fourth-generation nickel-based single-crystal superalloy at 1100oC [J]. Acta Metall. Sin., 2021, 57: 205
徐静辉, 李龙飞, 刘心刚 等. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响 [J]. 金属学报, 2021, 57: 205
5 Ratel N, Demé B, Bastie P, et al. In situ SANS investigation of the kinetics of rafting of γ′ precipitates in a fourth-generation single-crystal nickel-based superalloy [J]. Scr. Mater., 2008, 59: 1167
doi: 10.1016/j.scriptamat.2008.07.031
6 Zhang J X, Murakumo T, Köizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
doi: 10.1016/S1359-6454(03)00355-0
7 Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ /γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng., 2011, A528: 3435
8 Zhao P, Xie G, Duan H C, et al. Recrystallization during thermo-mechanical fatigue of two high-generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1221
doi: 10.11900/0412.1961.2023.00173
赵 鹏, 谢 光, 段慧超 等. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为 [J]. 金属学报, 2023, 59: 1221
9 Liu L, Meng J, Liu J L, et al. Investigation on low cycle fatigue behaviors of the [001] and [011] oriental single crystal superalloy at 760oC [J]. Mater. Sci. Eng., 2018, A734: 1
10 Liu L, Meng J, Liu J L, et al. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35: 1917
doi: 10.1016/j.jmst.2019.05.026
11 Han G M, Yu J J, Sun X F, et al. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2011, A528: 6217
12 Moverare J J, Johansson S, Reed R C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy [J]. Acta Mater., 2009, 57: 2266
doi: 10.1016/j.actamat.2009.01.027
13 Zhang J X, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy [J]. Scr. Mater., 2006, 54: 655
doi: 10.1016/j.scriptamat.2005.10.030
14 Fu B D, Zhang J X, Harada H. Significant thinning of deformation twins and its effect on thermomechanical fatigue fracture in nickel base single crystal superalloys [J]. Mater. Sci. Eng., 2014, A605: 253
15 Sun F, Zhang J X, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling [J]. Acta Mater., 2014, 67: 45
doi: 10.1016/j.actamat.2013.12.011
16 Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
17 Jing F L, Jiang K H, Zhang B, et al. Experiment on thermomechanical fatigue in nickel based single crystal superalloy DD6 [J]. J. Aeros. Power, 2018, 33: 2965
荆甫雷, 蒋康河, 张 斌 等. 镍基单晶高温合金DD6热机械疲劳试验 [J]. 航空动力学报, 2018, 33: 2965
18 Segersäll M, Moverare J J, Leidermark D, et al. In- and out-of-phase thermomechanical fatigue of a Ni-based single-crystal superalloy [A]. EUROSUPERALLOYS 2014—2nd European Symposium on Superalloys and Their Applocations [C]. MATEC Web of Conf., 2014, 14: 19003
19 Wang Y C, Li S X, Ai S H, et al. Thermo-mechanical fatigue behaviours of DD8 single crystal nickel base superalloy [J]. Acta Metall. Sin., 2003, 39: 903
王跃臣, 李守新, 艾素华 等. DD8单晶镍基高温合金的热机械疲劳 [J]. 金属学报, 2003, 39: 903
20 Lee D, Shin I, Kim Y, et al. A study on thermo mechanical fatigue life prediction of Ni-base superalloy [J]. Int. J. Fatigue, 2014, 62: 62
doi: 10.1016/j.ijfatigue.2013.10.011
21 Yu J J, Han G M, Chu Z K, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy [J]. Mater. Sci. Eng., 2014, A592: 164
22 Hu Y B, Zhang L, Cao T S, et al. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2018, A728: 124
23 Xiong J C, Li J R, Sun F L, et al. Microstructure of recrystallization and their effects on stress rupture property of single crystal superalloy DD6 [J]. Acta Metall. Sin., 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
熊继春, 李嘉荣, 孙凤礼 等. 单晶高温合金DD6再结晶组织及其对持久性能的影响 [J]. 金属学报, 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
24 Tan Z H, Wang X G, Song W, et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature [J]. Vacuum, 2020, 175: 109284
doi: 10.1016/j.vacuum.2020.109284
25 Caron P, Ramusat C, Diologent F. Influence of the γ′ fraction on the γ /γ′ topological inversion during high temperature creep of single crystal superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 159
26 Zhou H, Harada H, Ro Y, et al. Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys [J]. Mater. Sci. Eng., 2005, A394: 161
27 Liu B, Raabe D, Roters F, et al. Interfacial dislocation motion and interactions in single-crystal superalloys [J]. Acta Mater., 2014, 79: 216
doi: 10.1016/j.actamat.2014.06.048
28 Zhou L, Li S X, Wang Y C, et al. Calculation of the internal stresses at the γ /γ′ interface of DD8 single crystal nickel base superalloy after thermomechanical fatigue [J]. Acta Metall. Sin., 2005, 41: 245
周 丽, 李守新, 王跃臣 等. DD8单晶镍基高温合金热机械疲劳后γ /γ′界面位错网产生内应力的计算 [J]. 金属学报, 2005, 41: 245
29 Yang W C, Qu P F, Liu C, et al. Temperature dependence of compressive behavior and deformation microstructure of Ni-based single crystal superalloy with low stacking fault energy [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 157
doi: 10.1016/S1003-6326(22)66097-7
30 Wang X G, Liu J L, Liu J D, et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature [J]. Scr. Mater., 2018, 152: 94
doi: 10.1016/j.scriptamat.2018.04.020
31 Shimabayashi S, Kakehi K. Effect of ruthenium on compressive creep of Ni-based single-crystal superalloy [J]. Scr Mater., 2010, 63: 909
doi: 10.1016/j.scriptamat.2010.06.048
32 Epishin A, Link T, Nolze G. SEM investigation of interfacial dislocations in nickel-base superalloys [J]. J. Microsc., 2007, 228: 110
doi: 10.1111/jmi.2007.228.issue-2
33 Tsuno N, Shimabayashi S, Kakehi K, et al. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 433
34 Hong H U, Yoon J G, Choi B G, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2014, 69: 22
doi: 10.1016/j.ijfatigue.2013.01.015
35 Huang L, Sun X F, Guan H R, et al. Effect of rhenium addition on isothermal oxidation behavior of single-crystal Ni-based superalloy [J]. Surf. Coat. Technol., 2006, 200: 6863
doi: 10.1016/j.surfcoat.2005.10.037
36 Pahlavanyali S, Drew G, Rayment A, et al. Oxidation assisted thermomechanical fatigue failure of polycrystalline superalloys [J]. Mater. Sci. Technol., 2007, 23: 1454
doi: 10.1179/174328407X244004
37 Liu C T, Ma J, Sun X F. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000oC in air [J]. J. Alloys Compd., 2010, 491: 522
doi: 10.1016/j.jallcom.2009.10.261
38 Segersäll M, Kontis P, Pedrazzini S, et al. Thermal-mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying [J]. Acta Mater., 2015, 95: 456
doi: 10.1016/j.actamat.2015.03.060
39 Segersäll M, Moverare J J, Simonsson K, et al. Deformation and damage mechanisms during thermomechanical fatigue of a single-crystal superalloy in the <001> and <011> directions [A]. Superalloy 2012 [C]. Warrendale, PA: TMS, 2012: 215
[1] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[2] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[3] ZHANG Laiqi, PAN Kunming, DUAN Lihui, LIN Junpin. OXIDATION BEHAVIOR OF IN SITU SYNTHESIZED MoSi2-SiC COMPOSITES AT 500℃[J]. 金属学报, 2013, 49(11): 1303-1310.
[4] YUE Zhufeng;LU Zhenzhou;ZHENG Changqing(Northwestern Polytechnical University;Xi'an 710072). THE CREEP─DAMAGE BEHAVIOUR FOR SINGLE CRYSTAL NICKEL-BASE SUPERALLOY[J]. 金属学报, 1995, 31(8): 370-375.
[5] SU Hui;ZHANG Yugui;YAN Zhengqi Northeast University of Technology; Shenyang YAN Zhenqi; Department of Material Science and Srtairteering; Northeast University of Technolo6y; Shenyang 110006. FRACTAL ANALYSIS OF IMPACT FRACTURE OF METAL[J]. 金属学报, 1989, 25(6): 82-84.
No Suggested Reading articles found!