|
|
In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy |
TAN Zihao1,2, LI Yongmei1,2, WANG Xinguang1( ), ZHAO Haochuan3, TAN Haibing3, WANG Biao3, LI Jinguo1, ZHOU Yizhou1, SUN Xiaofeng1( ) |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Institute of Sichuan Gas Turbine Research, Aero Engine Corporation of China, Chengdu 610500, China |
|
Cite this article:
TAN Zihao, LI Yongmei, WANG Xinguang, ZHAO Haochuan, TAN Haibing, WANG Biao, LI Jinguo, ZHOU Yizhou, SUN Xiaofeng. In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy. Acta Metall Sin, 2024, 60(2): 154-166.
|
Abstract During the service, the turbine blades of aero-engines are subjected to a complex and ever-changing combination of temperature and stress, resulting in severe cyclic temperature/strain damages and thermal-mechanical fatigue (TMF) failures of the alloy. In this work, in-phase (IP) TMF tests under 600-1000oC were conducted on a newly developed fourth-generation single-crystal superalloy. The alloy's fracture characteristics and comprehensive damage mechanisms were examined via SEM, EBSD, and TEM. The results showed that when the strain range increased, the fatigue life of the experimental alloy noticeably decreased, and the hysteresis loop clearly opened. Stress response behaviors shifted from cyclic softening at high temperatures and cyclic hardening at low temperatures into a dominant characteristic of cyclic stabilizing. The fracture surfaces of alloys displayed ductile features after fatigue fracture under various circumstances, and the area fraction of dimples reduced with increasing strain amplitude. When the strain amplitude was low, the alloy was mainly subjected to oxidation damage, accompanied with a certain degree of creep damage. In contrast, the dominant deformation mechanism of the alloy was dislocation slipping in γ matrix and Orowan by-passing through γ' particles. As the strain amplitude increased to higher levels, the alloy was subjected to severe plastic deformation damage, while the degree of oxidation damage had been alleviated. Under this condition, the interfacial dislocations could shear into the γ' phase with the generated stacking fault or anti-phase boundary. Notably, no recrystallization grains or deformation twins were formed in the DD91 alloy during the IP-TMF experiments at different mechanical strain amplitudes.
|
Received: 22 June 2022
|
|
Fund: National Science and Technology Major Project(2017-VI-0002-0072);National Key Research and Development Program of China(2017YFA0700704);Program of CAS Interdisciplinary Innovation Team and Youth Innovation Promotion Association |
Corresponding Authors:
WANG Xinguang, professor, Tel: (024)23971887, E-mail: xgwang11b@imr.ac.cn; SUN Xiaofeng, professor, Tel: (024)23971807, E-mail: xfsun@imr.ac.cn
|
1 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 20
|
2 |
Li J R, Dong J M, Han M, et al. Effects of sand blasting on surface integrity and high cycle fatigue properties of DD6 single crystal superalloy [J]. Acta Metall. Sin., 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
|
|
李嘉荣, 董建民, 韩 梅 等. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响 [J]. 金属学报, 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
|
3 |
Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1109
doi: 10.11900/0412.1961.2023.00140
|
|
张 健, 王 莉, 谢 广 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2023, 59: 1109
|
4 |
Xu J H, Li L F, Liu X G, et al. Thermal-stress coupling effect on microstructure evolution of a fourth-generation nickel-based single-crystal superalloy at 1100oC [J]. Acta Metall. Sin., 2021, 57: 205
|
|
徐静辉, 李龙飞, 刘心刚 等. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响 [J]. 金属学报, 2021, 57: 205
|
5 |
Ratel N, Demé B, Bastie P, et al. In situ SANS investigation of the kinetics of rafting of γ′ precipitates in a fourth-generation single-crystal nickel-based superalloy [J]. Scr. Mater., 2008, 59: 1167
doi: 10.1016/j.scriptamat.2008.07.031
|
6 |
Zhang J X, Murakumo T, Köizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
doi: 10.1016/S1359-6454(03)00355-0
|
7 |
Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ /γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng., 2011, A528: 3435
|
8 |
Zhao P, Xie G, Duan H C, et al. Recrystallization during thermo-mechanical fatigue of two high-generation Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1221
doi: 10.11900/0412.1961.2023.00173
|
|
赵 鹏, 谢 光, 段慧超 等. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为 [J]. 金属学报, 2023, 59: 1221
|
9 |
Liu L, Meng J, Liu J L, et al. Investigation on low cycle fatigue behaviors of the [001] and [011] oriental single crystal superalloy at 760oC [J]. Mater. Sci. Eng., 2018, A734: 1
|
10 |
Liu L, Meng J, Liu J L, et al. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35: 1917
doi: 10.1016/j.jmst.2019.05.026
|
11 |
Han G M, Yu J J, Sun X F, et al. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2011, A528: 6217
|
12 |
Moverare J J, Johansson S, Reed R C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy [J]. Acta Mater., 2009, 57: 2266
doi: 10.1016/j.actamat.2009.01.027
|
13 |
Zhang J X, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy [J]. Scr. Mater., 2006, 54: 655
doi: 10.1016/j.scriptamat.2005.10.030
|
14 |
Fu B D, Zhang J X, Harada H. Significant thinning of deformation twins and its effect on thermomechanical fatigue fracture in nickel base single crystal superalloys [J]. Mater. Sci. Eng., 2014, A605: 253
|
15 |
Sun F, Zhang J X, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling [J]. Acta Mater., 2014, 67: 45
doi: 10.1016/j.actamat.2013.12.011
|
16 |
Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
|
17 |
Jing F L, Jiang K H, Zhang B, et al. Experiment on thermomechanical fatigue in nickel based single crystal superalloy DD6 [J]. J. Aeros. Power, 2018, 33: 2965
|
|
荆甫雷, 蒋康河, 张 斌 等. 镍基单晶高温合金DD6热机械疲劳试验 [J]. 航空动力学报, 2018, 33: 2965
|
18 |
Segersäll M, Moverare J J, Leidermark D, et al. In- and out-of-phase thermomechanical fatigue of a Ni-based single-crystal superalloy [A]. EUROSUPERALLOYS 2014—2nd European Symposium on Superalloys and Their Applocations [C]. MATEC Web of Conf., 2014, 14: 19003
|
19 |
Wang Y C, Li S X, Ai S H, et al. Thermo-mechanical fatigue behaviours of DD8 single crystal nickel base superalloy [J]. Acta Metall. Sin., 2003, 39: 903
|
|
王跃臣, 李守新, 艾素华 等. DD8单晶镍基高温合金的热机械疲劳 [J]. 金属学报, 2003, 39: 903
|
20 |
Lee D, Shin I, Kim Y, et al. A study on thermo mechanical fatigue life prediction of Ni-base superalloy [J]. Int. J. Fatigue, 2014, 62: 62
doi: 10.1016/j.ijfatigue.2013.10.011
|
21 |
Yu J J, Han G M, Chu Z K, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy [J]. Mater. Sci. Eng., 2014, A592: 164
|
22 |
Hu Y B, Zhang L, Cao T S, et al. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy [J]. Mater. Sci. Eng., 2018, A728: 124
|
23 |
Xiong J C, Li J R, Sun F L, et al. Microstructure of recrystallization and their effects on stress rupture property of single crystal superalloy DD6 [J]. Acta Metall. Sin., 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
|
|
熊继春, 李嘉荣, 孙凤礼 等. 单晶高温合金DD6再结晶组织及其对持久性能的影响 [J]. 金属学报, 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
|
24 |
Tan Z H, Wang X G, Song W, et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature [J]. Vacuum, 2020, 175: 109284
doi: 10.1016/j.vacuum.2020.109284
|
25 |
Caron P, Ramusat C, Diologent F. Influence of the γ′ fraction on the γ /γ′ topological inversion during high temperature creep of single crystal superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 159
|
26 |
Zhou H, Harada H, Ro Y, et al. Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys [J]. Mater. Sci. Eng., 2005, A394: 161
|
27 |
Liu B, Raabe D, Roters F, et al. Interfacial dislocation motion and interactions in single-crystal superalloys [J]. Acta Mater., 2014, 79: 216
doi: 10.1016/j.actamat.2014.06.048
|
28 |
Zhou L, Li S X, Wang Y C, et al. Calculation of the internal stresses at the γ /γ′ interface of DD8 single crystal nickel base superalloy after thermomechanical fatigue [J]. Acta Metall. Sin., 2005, 41: 245
|
|
周 丽, 李守新, 王跃臣 等. DD8单晶镍基高温合金热机械疲劳后γ /γ′界面位错网产生内应力的计算 [J]. 金属学报, 2005, 41: 245
|
29 |
Yang W C, Qu P F, Liu C, et al. Temperature dependence of compressive behavior and deformation microstructure of Ni-based single crystal superalloy with low stacking fault energy [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 157
doi: 10.1016/S1003-6326(22)66097-7
|
30 |
Wang X G, Liu J L, Liu J D, et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature [J]. Scr. Mater., 2018, 152: 94
doi: 10.1016/j.scriptamat.2018.04.020
|
31 |
Shimabayashi S, Kakehi K. Effect of ruthenium on compressive creep of Ni-based single-crystal superalloy [J]. Scr Mater., 2010, 63: 909
doi: 10.1016/j.scriptamat.2010.06.048
|
32 |
Epishin A, Link T, Nolze G. SEM investigation of interfacial dislocations in nickel-base superalloys [J]. J. Microsc., 2007, 228: 110
doi: 10.1111/jmi.2007.228.issue-2
|
33 |
Tsuno N, Shimabayashi S, Kakehi K, et al. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys [A]. Superalloy 2008 [C]. Warrendale, PA: TMS, 2008: 433
|
34 |
Hong H U, Yoon J G, Choi B G, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2014, 69: 22
doi: 10.1016/j.ijfatigue.2013.01.015
|
35 |
Huang L, Sun X F, Guan H R, et al. Effect of rhenium addition on isothermal oxidation behavior of single-crystal Ni-based superalloy [J]. Surf. Coat. Technol., 2006, 200: 6863
doi: 10.1016/j.surfcoat.2005.10.037
|
36 |
Pahlavanyali S, Drew G, Rayment A, et al. Oxidation assisted thermomechanical fatigue failure of polycrystalline superalloys [J]. Mater. Sci. Technol., 2007, 23: 1454
doi: 10.1179/174328407X244004
|
37 |
Liu C T, Ma J, Sun X F. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000oC in air [J]. J. Alloys Compd., 2010, 491: 522
doi: 10.1016/j.jallcom.2009.10.261
|
38 |
Segersäll M, Kontis P, Pedrazzini S, et al. Thermal-mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying [J]. Acta Mater., 2015, 95: 456
doi: 10.1016/j.actamat.2015.03.060
|
39 |
Segersäll M, Moverare J J, Simonsson K, et al. Deformation and damage mechanisms during thermomechanical fatigue of a single-crystal superalloy in the <001> and <011> directions [A]. Superalloy 2012 [C]. Warrendale, PA: TMS, 2012: 215
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|