Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 87-100    DOI: 10.11900/0412.1961.2018.00292
Orginal Article Current Issue | Archive | Adv Search |
Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism
Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG()
Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
Cite this article: 

Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism. Acta Metall Sin, 2019, 55(1): 87-100.

Download:  HTML  PDF(2627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the high-temperature melting process, Al is in full contact with SiC. The interface bonding properties of composites are closely related to the possibility and multi-directionality of interface reaction between them. A comprehensive understanding of the interfacial bonding, interfacial reaction, and interface structure between Al and SiC is of great significance for improving the material properties.There have been many researches on the wettability and interface reaction between Al or its alloys and SiC. However, there are still some differences and disputes on some issues, and the understanding of the true wettability of Al and SiC is not systematic enough. Reaction time and temperature have a great influence on the degree of interface reaction between Al and SiC, but there is still no systematic review on the specific relationship between reaction parameters and reaction degree. The addition of alloying elements can weaken the occurrence of interfacial reactions. However, under different reaction conditions, the relationship between the amount of alloying elements added and the reaction degree, and the mechanism of action of alloying elements on interface reaction have not been clearly reported. This article systematically reviews the interfacial reactions, interfacial products and reaction product evolution rules and mechanisms under specific reaction conditions, Al and the addition of different alloying elements to the SiC interface and interface wetting behavior. From the aspects of interfacial wetting, interfacial reaction and interfacial product, this article provided experimental data, theoretical references for the selection of process parameters during the preparation of composite.

Key words:  SiC/Al      aluminum matrix composite      interfacial reaction      interface structure      wetting behavior     
Received:  29 June 2018     
ZTFLH:  TB333  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0703101)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00292     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/87

Fig.1  Schematic of Si—C diatomic structure and 6H-SiC crystal
Fig.2  Variations in contact angle with time for molten Al on the Si-terminated and C-terminated 6H-SiC single crystals at 973~1173 K[21]
Fig.3  Comparison of the variations in contact angles for pure Al on the SiC and SiO2 substrates at 1173 K[20]
Fig.4  Comparison of experimental results (at 1173 K) and results calculated (at 1073 K) by Fang[49] for Wa in the Al-Si/SiC system (Wa—work of adhesion)
Fig.5  Comparison of experimental results (at 1173 K) and results calculated (at 1073 K) by Fang[49] for Wa in the Al-Cu/SiC system
Fig.6  Comparison of experimental results (at 1173 K) and results calculated (at 1073 K) by Fang[49] for Wa in the Al-Mg/SiC (a) and Al-Mg/SiCox (b) systems
Fig.7  Comparison of experimental results (at 1173 K) and results calculated (at 1073 K) by Fang[49] for Wa in the Al-Ti/SiC system
[1] Taya M, Arsenault R J.A comparison between a shear lag type model and an eshelby type model in predicting the mechanical properties of a short fiber composite[J]. Scr. Metall., 1987, 21: 349
[2] Luo C P, Sui X D, Ouyang L Z, et al.Crvstallographic orientation relationship between SiC and Al in SiCp/Al-Si composites[J]. Acta Metall. Sin., 1999, 35: 343(罗承萍, 隋贤栋, 欧阳柳章等. SiCp/Al-Si复合材料中SiC/Al的晶体学位向关系[J]. 金属学报, 1999, 35: 343)
[3] Lü W J, Bian Y J, Zhang D, et al.Growth mechanism of reinforcement in in situ processed TiC/Ti composites[J]. Acta Metall. Sin., 1999, 35: 536(吕维洁, 卞玉君,张荻等. 原位合成TiC/Ti基复合材料增强体的生长机制[J]. 金属学报, 1999, 35: 536)
[4] Fan G L, Yu Z Y, Tan Z Q, et al.Evolution, control, and effects of interface in CNT/Al composites: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 839
[5] Qian F.An investigation on fabrication of SiCp/Al composite materials with pressureless infiltration techniques [D]. Nanjing: Nanjing University of Science and Technology, 2008(钱凤. 无压浸渗法制备SiCp/Al复合材料的研究 [D]. 南京: 南京理工大学, 2008)
[6] Nie J H, Fan J Z, Zhang S M, et al.Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 875
[7] Shi Z L, Ochiai S, Gu M Y, et al.Interfacial microstructure evolution in aluminium matrix composites reinforced with unoxidized and oxidized SiC particles[J]. Surf. Interface Anal., 2001, 31: 375
[8] Gupta M, Surappa M K, Qin S.Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced A1 based metal-matrix composite[J]. J. Mater. Process. Technol., 1997, 67: 94
[9] Rado C, Kalogeropoulou S, Eustathopoulos N.Bonding and wetting in non-reactive metal/SiC systems: Weak or strong interfaces[J]. Mater. Sci. Eng., 2000, A276: 195
[10] Luo Z P, Song Y G, Zhang S Q.A TEM study of the microstructure of SiCP/Al composite prepared by pressureless infiltration method[J]. Scr. Mater., 2001, 45: 1183
[11] Shi Z L, Gu M Y, Liu J Y, et al.Interfacial reaction between the oxidized SiC particles and Al-Mg alloy[J]. Chin. Sci. Bull., 2001, 46: 1161(施忠良, 顾明元, 刘俊友等. 氧化的碳化硅与铝镁合金之间的界面反应[J]. 科学通报, 2001, 46: 1161)
[12] Wu G H, Su J, Gou H S, et al.Study on graphite fiber and Ti particle reinforced Al composite[J]. J. Mater. Sci., 2009, 44: 4776
[13] Song M H, Wu G H, Yang W S, et al.Mechanical properties of Cf/Mg composites fabricated by pressure infiltration method[J]. J. Mater. Sci. Technol., 2010, 26: 931
[14] Cong X S.Wettability of silicon carbide by molten aluminum or aluminum alloys and their interfacial microstructures [D]. Changchun: Jilin University, 2014(丛晓霜. Al及其合金与多晶α-SiC陶瓷的润湿及界面结构 [D]. 长春: 吉林大学, 2014)
[15] Wang W M, Pan F S, Sun X W, et al.Advance in research on interfacial reaction in SiCp/Al composites[J]. J. Chongqing Univ.: Nat. Sci. Ed., 2004, 27: 108(王文明, 潘复生, 孙旭炜等. SiCp/Al复合材料界面反应研究现状[J]. 重庆大学学报: 自然科学版, 2004, 27: 108)
[16] Viala J C, Fortier P, Bouix J.Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide[J]. J. Mater. Sci., 1990, 25: 1842
[17] Viala J C, Bosselet F, Laurent F, et al.Mechanism and kinetics of the chemical interaction between liquid aluminium and silicon-carbide single crystals[J]. J. Mater. Sci., 1993, 28: 5301
[18] Peteves S D, Tambuyser P, Helbach P, et al.Microstructure and microchemistry of the Al/SiC interface[J]. J. Mater. Sci., 1990, 25: 3765
[19] Iseki T, Kameda T, Maruyama T.Interfacial reactions between SiC and aluminium during joining[J]. J. Mater. Sci., 1984, 19: 1692
[20] Cong X S, Shen P, Wang Y, et al.Wetting of polycrystalline SiC by molten Al and Al-Si alloys[J]. Appl. Surf. Sci., 2014, 317: 140
[21] Shen P, Wang Y, Ren L H, et al.Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system[J]. Appl. Surf. Sci., 2015, 355: 930
[22] Laurent V, Chatain D, Eustathopoulos N.Wettability of SiC by aluminium and Al-Si alloys[J]. J. Mater. Sci., 1987, 22: 244
[23] Laurent V, Rado C, Eustathopoulos N.Wetting kinetics and bonding of Al and Al alloys on α-SiC[J]. Mater. Sci. Eng., 1996, A205: 1
[24] Ferro A C, Derby B.Wetting behaviour in the Al-Si/SiC System: Interface reactions and solubility effects[J]. Acta Metall. Mater., 1995, 43: 3061
[25] Hashim J, Looney L, Hashmi M S J. The wettability of SiC particles by molten aluminium alloy[J]. J. Mater. Process. Technol., 2001, 119: 324
[26] Landry K, Rado C, Eustathopoulos N.Influence of interfacial reaction rates on the wetting driving force in metal/ceramic systems[J]. Metall. Mater. Trans., 1996, 27A: 3181
[27] Wang Y.Wettability of SiC single crystal and carbon nanotubes by molten aluminum and their interfacial microstructures [D]. Changchun: Jilin University, 2015(王轶. Al在单晶SiC和碳纳米管上的润湿性及界面结构 [D]. 长春: 吉林大学, 2015)
[28] Liu J S.Wettability of silicon carbide and silica by molten aluminum alloys and their interfacial microstructures [D]. Changchun: Jilin University, 2016(刘精深. Al合金与SiC和SiO2的润湿性及界面结构 [D]. 长春: 吉林大学, 2016)
[29] Dezellus O, Hodaj F, Eustathopoulos N.Chemical reaction-limited spreading: The triple line velocity versus contact angle relation[J]. Acta Mater., 2002, 50: 4741
[30] Cassie A B D. Contact angle[J]. Discuss. Faraday Soc., 1948, 3: 11
[31] León C, Drew R.The influence of nickel coating on the wettability of aluminum on ceramics[J]. Composites, 2002, 33A: 1429
[32] Zhou J, Dru?d?el A T, Duszczyk J.The effect of extrusion parameters on the fretting wear resistance of Al-based composites produced via powder metallurgy[J]. J. Mater. Sci., 1999, 34: 5089
[33] Shi Z, Ochiai S, Gu M, et al.The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites[J]. Appl. Phys., 2002, 74A: 97
[34] Xu X Y, Wang H Y, Zha M, et al.Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: A first-principles study[J]. Appl. Surf. Sci., 2018, 437: 103
[35] Beer S Z.Liquid Metals: Chemistry and Physics[M]. New York: Marcel Dekker, 1972: 127
[36] Lee J C, Ahn J P, Shim J H, et al.Interfacial phenomena in the SiC/2024Al composite: II Tailoring the interface[J]. Korea Inst. Met. Mater., 2000, 38: 322
[37] Pai B C, Ramani G, Pillai R M, et al.Role of magnesium in cast aluminium alloy matrix composites[J]. J. Mater. Sci., 1995, 30: 1903
[38] Guo J.The effects and mutual action of alloy elements and SiC particulate surface condition on the interface of SiCp/Al composites [D]. Zhengzhou: Zhengzhou University, 2003(郭建. 合金元素及增强体表面状况对SiCp/Al复合材料界面的影响及其交互作用 [D]. 郑州: 郑州大学, 2003)
[39] Guo J, Shen N F.Control of detrimental interface reaction in SiCp/Al composite materials[J]. Mater. Sci. Eng., 2002, 20: 605(郭建, 沈宁福. SiC颗粒增强Al基复合材料中有害界面反应的控制[J]. 材料科学与工程, 2002, 20: 605)
[40] Pech-Canul M I, Katz R N, Makhlouf M M, et al. The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys[J]. J. Mater. Sci., 2000, 35: 2167
[41] Ramani G, Pillai R M, Pai B C, et al.Effect of mixing conditions and reactive elements on the porosity and dispersion of SiC particulate in cast Al-SiCp composites[J]. J. Mater. Sci., 1993, 12: 1117
[42] Ferro A C, Derby B.Wetting behaviour in the Al-Si/SiC System: Interface reactions and solubility effects[J]. Acta Metall. Mater., 1995, 43: 3061
[43] Lee J C, Byun J Y, Park S B, et al.Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite[J]. Acta Mater., 1998, 46: 1771
[44] Fang X, Fan T X, Zhang D.Work of adhesion in Al/SiC composites with alloying element addition[J]. Metall. Mater. Trans., 2013, 44A: 5192
[45] Lee J C, Byun J Y, Oh C S, et al.Effect of various processing methods on the interfacial reactions in SiCp/2024 Al composites[J]. Acta Mater., 1997, 45: 5303
[46] Han D S, Jones H, Atkinson H V.The wettability of silicon carbide by liquid aluminium: The effect of free silicon in the carbide and of magnesium, silicon and copper alloy additions to the aluminium[J]. J. Mater. Sci., 1993, 28: 2654
[47] Candan E.Effect of alloying elements to aluminium on the wettability of Al/SiC system[J]. Turk. J. Eng. Environ. Sci., 2002, 26: 1
[48] Rodríguez-Reyes M, Pech-Canul M I, Rendón-Angeles J C, et al. Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration[J]. Compos. Sci. Technol., 2006, 66: 1056
[49] Fang X.Thoeretical prediction of interfacial reaction and work of adhesion in SiC/Al composites [D]. Shanghai: Shanghai Jiao Tong University, 2013(房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究 [D]. 上海: 上海交通大学, 2013)
[50] Lee J C, Park S B, Seok H K, et al.Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composite[J]. Acta Mater., 1998, 46: 2635
[51] Li J G, Coudurier L, Eustathopoulos N.Work of adhesion and contact-angle isotherm of binary alloys on ionocovalent oxides[J]. J. Mater. Sci., 1989, 24: 1109
[52] Zhong W M, L'Espérance G, Suéry M. Interfacial reactions in Al-Mg (5083)/Al2O3p composites during fabrication and remelting[J]. Metall. Mater. Trans., 1995, 26A: 2625
[53] Ghosh P K, Ray S.Influence of annealing on the mechanical properties of compocast Al(Mg)-Al2O3 particulate composite[J]. J. Mater. Sci., 1993, 28: 3783
[54] Sreekumar V M, Ravi K R, Pillai R M, et al.Thermodynamics and kinetics of the formation of Al2O3/MgAl2O4/MgO in Al-silica metal matrix composite[J]. Metall. Mater. Trans., 2008, 39A: 919
[55] Lee K B, Kim Y S, Kwon H.Fabrication of Al-3 Wt pct Mg matrix composites reinforced with Al2O3 and SiC particulates by the pressureless infiltration technique[J]. Metall. Mater. Trans., 1998, 29A: 3087
[56] Petitcorps Y L, Quenisset J M, Le Borgne G, et al.Segregation of magnesium in squeeze-cast aluminium matrix composites reinforced with alumina fibres[J]. Mater. Sci. Eng., 1991, A135: 37
[57] Hallstedt B, ?gren J, Liu Z K.Fibre-matrix interactions during fabrication of Al2O3 Mg metal matrix composites[J]. Mater. Sci. Eng., 1990, A129: 135
[58] Zuo R.The reaction and structure evolution at the interfaces of Al/Al alloy-SiC/SiCox [D]. Changchun: Jilin University, 2017(左蕊. Al/Al合金-SiC/SiCox界面反应与结构演变 [D]. 长春: 吉林大学, 2017)
[59] Ribes H, Suéry M, L'esperance Q, et al. Microscopic examination of the interface region in 6061-Al/SiC composites reinforced with as-received and oxidized SiC particles[J]. Metall. Mater. Trans., 1990, 21A: 2489
[60] Fishkis M.Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites[J]. J. Mater. Sci., 1991, 26: 2651
[61] Lee J C, Lee H I, Ahn J P, et al.Modification of the interface in SiC/Al composites[J]. Metall. Mater. Trans., 2000, 31A: 2361
[62] Ma X C, Wu J B.An investigation on wettability and interfacial phenomena of Al-SiC system[J]. Mater. Sci. Eng., 1994, 12(1): 37(马晓春, 吴锦波. Al-SiC系润湿性与界面现象的研究[J]. 材料科学与工程, 1994, 12(1): 37)
[63] Pan F S, Zhang J, Chen H, et al.Effect of rare earth additions on the wettability of An-Al-Zn-Mg-Cu/Al2O3 system[J]. Acta Mater. Compos. Sin., 1998, 15(1): 46(潘复生, 张静, 陈晖等. 稀土对Al-Zn-Mg-Cu/Al2O3陶瓷界面润湿性的影响[J]. 复合材料学报, 1998, 15(1): 46)
[64] Carotenuto G, Gallo A, Nicolais L.Degradation of SiC particles in aluminium-based composites[J]. J. Mater. Sci., 1994, 29: 4967
[65] Eustathopoulos N, Coudurier L. Adsorption and wettability in metal/ceramic system [A]. Capillarity Today [C]. Berlin: Springer, 1991, vol.386: 15
[66] Saiz E, Tomsia A P.Atomic dynamics and Marangoni films during liquid-metal spreading[J]. Nat. Mater., 2004, 3: 903
[67] Tanaka S, Kohyama M.Ab initio calculations of 3C-SiC[111]/Ti polar interfaces [A]. 2000 International Semiconducting and Insulating Materials Conference[C]. Canberra, ACT, Australia, Australia: IEEE, 2000: 299
[68] Zhang L J, Yang D L, Qiu F, et al.Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites[J]. Mater. Sci. Eng., 2015, A624: 102
[69] Shaga A.Fabrication of nacre-inspired Al alloy/SiC lamellar composites and their microstructures and properties [D]. Changchun: Jilin University, 2016(阿拉腾沙嘎. 仿珍珠贝Al合金/SiC层状复合材料的制备、组织与性能 [D]. 长春: 吉林大学, 2016)
[70] Zhang H, Shen P, Shaga A, et al.Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template[J]. Mater. Lett., 2016, 183: 299
[71] Shen P, Xi J W, Fu Y J, et al.Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 944
[72] Shaga A, Shen P, Sun C, et al.Lamellar-interpenetrated Al-Si-Mg/SiC composites fabricated by freeze casting and pressureless infiltration[J]. Mater. Sci. Eng., 2015, A630: 78
[73] Shaga A, Shen P, Guo R F, et al.Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration[J]. Ceram. Int., 2016, 42: 9653
[1] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[4] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[5] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[6] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[7] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[8] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[9] Zhaozhao Lü,Yufei ZU,Jianjun SHA,Yuqiang XIAN,Wei ZHANG,Ding CUI,Conglin YAN. Fabrication and Mechanical Properties of Carbon Fiber-Reinforced Aluminum Matrix Compositeswith Cu Interphase[J]. 金属学报, 2019, 55(3): 317-324.
[10] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[11] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[12] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[13] Naiqin ZHAO, Xinghai LIU, Bowen PU. Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review[J]. 金属学报, 2019, 55(1): 1-15.
[14] Hao DING, Xiping CUI, Changshou XU, Aibin LI, Lin GENG, Guohua FAN, Junfeng CHEN, Songhe MENG. Fabrication and Mechanical Characteristics of Multi-Laminated Aluminum Matrix Composites Reinforcedby Continuous Basalt Fibers[J]. 金属学报, 2018, 54(8): 1171-1178.
[15] Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. 金属学报, 2017, 53(7): 869-878.
No Suggested Reading articles found!