Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 320-330    DOI: 10.11900/0412.1961.2015.00327
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF PIPELINE STEEL UNDER DEPOSIT CORROSION AND THE INHIBITION PERFORMANCE OF ORGANIC PHOSPHINE INHIBITOR
Yunze XU1,Yi HUANG1,Liang YING2,Fei YANG1,Bing LI1,Xiaona WANG3()
1 School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3 School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Yunze XU, Yi HUANG, Liang YING, Fei YANG, Bing LI, Xiaona WANG. CORROSION BEHAVIOR OF PIPELINE STEEL UNDER DEPOSIT CORROSION AND THE INHIBITION PERFORMANCE OF ORGANIC PHOSPHINE INHIBITOR. Acta Metall Sin, 2016, 52(3): 320-330.

Download:  HTML  PDF(5286KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Localized corrosion such as pitting and mesa attack caused by the presence of solid deposits on a metal surface is defined as under deposit corrosion (UDC). UDC is frequently observed in oil and gas transition pipelines where sand, debris biofilm and carbonate deposit are present. Studies have found that the introduction of oxygen would accelerate the galvanic corrosion behavior between the deposit covered area and the area without deposit. Some experiments have been carried out and demonstrated that high concentration inhibitor should be used for the migration of UDC. However, the inhibition effect of the organic phosphonic inhibitor for UDC is rare in the previous studies. In this work, the evaluation of UDC behavior of X65 pipeline steel and the performance of corrosion inhibitor Ethylene Diamine Tetra (Methylene Phosphonic Acid) Sodium (EDTMPS) in the oxygen contained solutions are studied by using polarization dynamic scan (PDS), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) methods. The galvanic effect caused by the deposit is studied by using wire beam electrode (WBE). The measurement results show that the corrosion rate of deposit-covered electrode is lower than that of bare electrode, but localized corrosion is observed on the deposit-covered steel surface. After 35 mg/L EDTMPS is introduced into the solution, the corrosion rate of the bare steel decreased from 0.17 mm/a to 0.082 mm/a and the corrosion rate of the deposit covered electrode decreased from 0.051 mm/a to 0.026 mm/a. Protective films are observed on both deposit covered steel surface and bare steel surface after EDTMPS added. In the galvanic corrosion monitoring experiment by using WBE, the under deposit area has a lower potential and performs as the anodic area with serious localized corrosion. After 35 mg/L EDTMPS is injected, the average potential begins to decrease. The maximum anodic current density and the total anodic current respectively decrease from 0.21 mA/cm2 and 0.056 mA to 0.078 mA/cm2 and 0.021 mA. The electrochemical measurement results reveal that EDTMPS has an excellent inhibition effect for the corrosion of both bare electrode and deposit covered electrode. The WBE test illustrates that EDTMPS also has an inhibition effect on the galvanic corrosion caused by the covering deposit. However, EDTMPS cannot completely prevent the localized corrosion behavior on WBE surface.

Key words:  pipeline steel      under deposit corrosion      EDTMPS      galvanic effect      wire beam electrode     
Received:  23 June 2015     
Fund: Supported by National Science and Technology Pillar Program During the Twelfth Five-Year Plan Period (No.2011ZX05056), China Postdoctoral Science Foundation (No.2014M561223) and Fundamental Research Funds for the Central Universities (No DUT15YQ36)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00327     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/320

Fig.1  Chemical structure of Ethylene Diamine Tetra (Methylene Phosphonic Acid) Sodium
Fig.2  Schematic of SiO2 applying method on the electrode surface
Fig.3  Photo of wire beam electrode (WBE) (a), schematic of WBE with sand deposit (b) and working principle sketches of WBE (c)
Fig.4  OM images of X65 steel (a) and SiO2 sand particle (b)
Fig.5  Polarization curves of X65 steel with and without EDTMPS injected
(a) bare electrode (b) deposit-covered electrode
Electrode ba bc Ecorr
V
icorr
Acm-2
vcorr
mma-1
B
Bare electrode without EDTMPS 89 320 -0.706 1.32×10-5 0.158 30
Bare electrode with EDTMPS 126 174 -0.749 6.78×10-6 0.081 31
Under-deposit electrode without EDTMPS 97 85 -0.743 4.11×10-6 0.049 20
Under-deposit electrode with EDTMPS 262 98 -0.776 2.96×10-6 0.035 31
Table 1  Electrochemical parameters fitted from the polarization curves of each X65 steel electrode
Electrode Rsol
Ωcm2
Rt
Ωcm2
n CPE
μΩ-1cm-2sn
Bare electrode without EDTMPS 8.13 1219 0.71 942
Bare electrode with EDTMPS 7.56 2692 0.75 392
Under-deposit electrode without EDTMPS 29.72 4473 0.75 370
Under-deposit electrode with EDTMPS 28.60 8882 0.84 295
Table 2  Fitted parameters of the elements in the equivalent circuit of the EIS measurement results
Fig.6  EIS of X65 steel with and without EDTMPS injected (Zim--imaginary part of the impedance, Zre--real part of the impedance)
(a) bare electrode (b) deposit-covered electrode
Fig.7  Equivalent circuit for fitting the EIS measurement results shown in Fig.6 (Rsol--solution resistance, Rt--charge transfer resistance, CPE--constant phase angle element)
Fig.8  Corrosion rate measured by liner polarization resistance (LPR) method
Fig.9  Surface macro morphologies of X65 steel (a) bare electrode without EDTMPS (b) bare electrode with EDTMPS (c) deposit-covered electrode without EDTMPS (d) deposit-covered electrode with EDTMPS
Fig.10  SEM images of X65 steel surface morphologies (a) bare electrode without EDTMPS (b) bare electrode with EDTMPS (c) deposit-covered electrode without EDTMPS (d) deposit-covered electrode with EDTMPS
Fig11  Corrosion potential (a) and galvanic current (b) distribution maps of X65 WBE in the solution without EDTMPS 5 h (E--open circuit potential of each wire electrode; i--galvanic current density of each wire electrode)
Fig 12  Corrosion potential (a, c) and galvanic current (b, d) distribution maps of X65 WBE after EDTMPS introduced into the solution for 5 h (a, b) and 24 h (c, d)
图13  Photo of the WBE after EDTMPS added for 24 h
[1] Zhang X Y, Di C, Chen Z Y, Wang F P, Du Y L.Corros Sci Prot Technol, 1999; 11: 279
[1] (张学元, 邸超, 陈卓元, 王凤平, 杜元龙. 腐蚀科学与防护技术, 1999; 11: 279)
[2] de Reus J A M, Hendriksen E L J A, Wilms M E, Al-Habsi Y N, Durnie W H, Gough M A. Corrosion 2005, Houston: NACE, 2005: 05288
[3] Xu Y Z, Huang Y, Wang X N, Lin X Q.Sens Actuators, 2016; 224B: 37
[4] Sun C, Sun J B, Wang Y, Wang S J, Liu J X.Acta Metall Sin, 2014; 50: 811
[4] (孙冲, 孙建波, 王勇, 王世杰, 刘建新. 金属学报, 2014; 50: 811)
[5] Gao Q Y, Zhang J J, Yang Z G, Yang D M, Liu J N, Zang H Y, Zhu Y Y, Zhang T.Sci Technol Rev, 2014; 32(24): 35
[5] (高秋英, 张江江, 杨祖国, 羊东明, 刘冀宁, 臧晗宇, 朱原原, 张涛. 科技导报, 2014; 32(24): 35)
[6] Jeannin M, Calonnec D, Sabot R, Refait P.Corros Sci, 2010; 52: 2026
[7] Tan Y, Fwu Y, Bhardwaj K.Corros Sci, 2011; 53: 1254
[8] Pandarinathan V, Lepková K, Bailey S I, Gubner R.Corros Sci, 2013; 72: 108
[9] Pandarinathan V, Lepková K, Bailey S I, Gubner R. J Electrochem Soc, 2013; 160: C432
[10] Cheng H P, Wang D J.Corros Prot Petrochem Ind, 2014; 31(1): 46
[10] (程海鹏, 王东江. 石油化工腐蚀与防护, 2014; 31(1): 46)
[11] Jia H L, Zhao C P, Wang H, Jiang S, Fei X S.Pipe Tech Equip, 2013; (3): 51
[11] (贾恒磊, 赵春平, 汪浩, 姜姝, 费雪松. 管道技术与设备, 2013; (3): 51)
[12] Machuca L L, Murray L, Gubner R, Bailey S I.Mater Corros, 2014; 65: 8
[13] Sawford M K, Ateya B G, Abdullah A M, Pickering H W.J Electrochem Soc, 2002; 149: B198
[14] Ya-Chiao C, Woollam R, Orazem M E.J Electrochem Soc, 2014; 161: C321
[15] Pandarinathan V, Lepková K, Bailey S I, Gubner R.Corrosion 2011, Houston: NACE, 2011: 11261
[16] Zhang G A, Yu N, Yang L Y, Guo X P.Corros Sci, 2014; 86: 202
[17] Pedersen A, Bilkova K, Gulbrandsen E, Kvarekval J.Corrosion 2008, Houston: NACE, 2008: 08632
[18] Huang Y, Xu Y, Li B, Ying L, Yang F, Wang X.Corros Eng Sci Technol, DOI: 10.1179/1743278215Y.0000000047
[19] Dong Z H, Shi W, Guo X P.Acta Phys-Chim Sin, 2011; 27: 127
[19] (董泽华, 石维, 郭兴蓬. 物理化学学报, 2011; 27: 127)
[20] Aung N N, Tan Y J.Corros Sci, 2004; 46: 3057
[21] Tan Y J, Aung N N.Mater Corros, 2014; 65: 457
[22] Varela F, Tan M Y, Forsyth M.Corros Eng Sci Technol, 2015; 50: 226
[23] Belayachi M, Serrar H, Zarrok H, El Assyry A, Zarrouk A, Oudda
[23] H, Boukhris S, Hammouti B, Ebenso E E, Geunbour A.Int J Electrochem Sci, 2015; 10: 3010
[24] Zhang B R, Zhang L, Li F T, Hu W, Hannam P M.Corros Sci, 2010; 52: 3883
[25] Liu L S.Shanxi Chem Ind, 2009; 29(3): 38
[25] (刘丽莎. 山西化工, 2009; 29(3): 38)
[26] Zou Y, Wang J, Zheng Y Y.Corros Sci, 2011; 53: 208
[27] Orlikowski J, Darowicki K, Mikołajski S.Sens Actuators, 2013; 181B: 22
[28] Jiang S H, Xu J W.Shandong Chem Ind, 2013; 42(12): 9
[28] (蒋守红, 徐杰武. 山东化工, 2013; 42(12): 9)
[29] Cao C N.Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 175
[29] (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 175)
[30] Stern M, Geary A L.J Electrochem Soc, 1957; 104: 56
[31] Peng X, Wang J, Shan C, Wang H J, Liu Z J, Zou Y.Acta Metall Sin, 2012; 48: 1260
[31] (彭欣, 王佳, 山川, 王海杰, 刘在健, 邹妍. 金属学报, 2012; 48: 1260)
[32] Tan Y J.Corros Sci, 2011; 53: 1145
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[4] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[5] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[6] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[7] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[8] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[9] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[10] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[11] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[12] Xianbo SHI,Dake XU,Maocheng YAN,Wei YAN,Yiyin SHAN,Ke YANG. Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2017, 53(2): 153-162.
[13] Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. 金属学报, 2017, 53(12): 1568-1578.
[14] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
No Suggested Reading articles found!