Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1590-1596    DOI: 10.3724/SP.J.1037.2013.00315
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING BEHAVIOR AND MECHANISM OF X65 AND X80 PIPELINE STEELS IN HIGH pH SOLUTION
ZHU Min, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LI Jiankuan, LI Qiong, JIA Jinghuan
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHU Min, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LI Jiankuan, LI Qiong, JIA Jinghuan. STRESS CORROSION CRACKING BEHAVIOR AND MECHANISM OF X65 AND X80 PIPELINE STEELS IN HIGH pH SOLUTION. Acta Metall Sin, 2013, 49(12): 1590-1596.

Download:  PDF(2785KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

X80 pipeline steel is a low carbon, micro—alloyed high—grade steel and a fairly new steel used as pipeline material in worldwide. The material has the huge potential to be used widely for building the oil/gas transmission pipelines in the 21st century because of its high intensity and high toughness. X80 steel has been adopted on the second west—east gas transmission pipeline project in China. Whereas, there is a issue, stress corrosion cracking (SCC) is more likely to occur on X80 pipeline steel, because of its high strength and fine microstructure, it will be a vital threat to safe operation of buried oil/gas pipelines. However, the related research about SCC behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution is rarely reported at present. Comparing with X65 pipeline steel, X80 steel has higher strength and finer microstructure, because of these differences, it may have some certain influence on the SCC behavior of X80 steel, and even change the mechanism of high pH SCC. Consequently, it is necessary to study the SCC behavior and mechanism of X80 steel in high pH solution. In this work, the SCC behavior and mechanism of X65 and X80 pipeline steels in high pH concentrated carbonate/bicarbonate solution are investigated by slow strain rate testing (SSRT), electrochemical test and surface analysis technique. The results show that the cracking mode of X65 pipeline steel in carbonate/bicarbonate solution is intergranular SCC (IGSCC). While the mixed cracking mode of X80 pipeline steel in high pH solution is that the crack is intergranular in the early stage of the crack propagation, and transgranular SCC (TGSCC) in the later stage, which is mainly transgranular. The cracking mode of X80 steel is associated with the microstructure and high strength of the steel. The key reason for TGSCC occurring of X80 steel is that the decrease of pH value of the crack tip during the crack propagation process. The SCC mechanism of X65 steel in high pH carbonate/bicarbonate solution is anodic dissolution (AD) mechanism. While the SCC mechanism of X80 steel in high pH solution is mixed controlled by both AD and hydrogen embrittlement (HE) mechanisms, and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The high strength X80 steel consisted of fine acicular ferrite and granular bainite has a higher susceptibility to SCC in high pH solution, comparing with low strength X65 steel composed of ferrite and pearlite.

Key words:  pipeline steel      stress corrosion cracking      high pH solution     
Received:  08 June 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00315     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1590

[1] Zhang G A, Cheng Y F.  Corros Sci, 2010; 52: 960

[2] Mustapha A, Charles E A, Hardie D.   Corros Sci, 2012; 54: 5
[3] Oskuie A A, Shahrabi T, Shahriari A, Saebnoori E.  Corros Sci, 2012; 61: 111
[4] Arafin M A, Szpunar J A.  Mater Sci Eng, 2011; A528: 4927
[5] Kang Y W, Chen W X, Kania R, Boven G V, Worthingham R.  Corros Sci, 2011; 53: 968
[6] Lu B T, Luo J L, Norton P R.  Corros Sci, 2010; 52: 1787
[7] Sadeghi Meresht E, Shahrabi Farahani T, Neshati J.  Eng Fail Anal, 2011; 18: 963
[8] Jack T R, Erno B, Krist K.  Corrosion, 2000; 362: 10
[9] Manfredi C, Otegui J L.  Eng Fail Anal, 2002; 9: 495
[10] Arafin M A, Szpunar J A.  Corros Sci, 2009; 51: 119
[11] Gonzalez—Rodriguez J G, Casales M, Salinas—Bravo V M, Albarran J L,
Martinez L.  Corrosion, 2002; 58: 584
[12] He D X, Chen W, Luo J L.  Corrosion, 2004; 60: 778
[13] Parkins R N, Blanchard Jr W K, Delanty B S.  Corrosion, 1994; 50: 394
[14] Park J J, Pyun S I, Na K H, Lee S M, Kho Y T.  Corrosion, 2002; 58: 329
[15] Parkins R N.  Corrosion, 1987; 43: 130
[16] Lu B T, Song F M, Gao M, Elboujdaini M.  Corros Sci, 2010; 52: 4064
[17] Li M C, Cheng Y F.  Electrochim Acta, 2008; 53: 2831
[18] Song F M.  Corros Sci, 2009; 51: 2657
[19] Wang J Q, Atrens A, Cousens D R, Kelly P M, Nockolds C, Bulcock S.Acta Mater, 1998; 46: 5677
[20] Wang J Q, Atrens A, Cousens D R, Kinaev N.  J Mater Sci, 1999; 34: 1721
[21] Wang J Q, Atrens A, Cousens D R, Nockolds C, Bulcock S.  J Mater Sci, 1999; 34: 1711
[22] Atrens A, Wang J Q, Stiller K, Andren H O.  Corros Sci, 2006; 48: 79
[23] Liang P.  PhD Dissertation, University of Science and Technology Beijing, 2008
(梁平. 北京科技大学博士学位论文, 2008)
[24] Lu B T, Luo J L.  Corrosion, 2006; 62: 129
[25] Xu C C, Chi L, Hu G, Huang J, Wang Z S.  J Chin Soc Corros Prot, 2005; 25: 20
(许淳淳, 池琳, 胡钢, 黄杰, 王紫色. 中国腐蚀与防护学报, 2005; 25: 20)
[26] Fang B Y, Wang J Q, Zhu Z Y, Han E H, Ke W.  Acta Metall Sin, 2001; 37: 453
(方丙炎, 王俭秋, 朱自勇, 韩恩厚, 柯伟. 金属学报, 2001; 37: 453)
[27] Wang Z F, Atrens A.  Metall Mater Trans, 1996; 27A: 2686
[28] Parkins R N.  Corrosion, 1996; 52: 363
[29] Rebak R B, Xia Z, Safruddin R, Szklarska—Smialowska Z.  Corrosion, 1996; 52: 396
[30] Li J, Elboujdaini M, Fang B, Revie R W, Phaneuf M W.  Corrosion, 2006; 62: 316
[31] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N.  Corros Sci, 2008; 50: 625
[32] Hoffmeister H.  Corrosion, 2011; 67: 1
[33] Ateya B G, Pickering H W.  Corros Sci, 1995; 37: 1443
[34] Chen W, King F, Vokes E.  Corrosion, 2002; 58: 267
[35] Guo H, Li G F, Cai X, Yang W.  Acta Metall Sin, 2004; 40: 967
(郭浩, 李光福, 蔡珣, 杨武. 金属学报, 2004; 40: 967)
[36] Dmytrakh I M.Strain, 2011; 47: 427
[37] Tang X, Cheng Y F.Corros Sci, 2011; 53: 2927
[38] Wang Z F, Atrens A.Metall Mater Trans, 1996; 27A: 2686
[39] Wang J Q, Atrens A.Corros Sci, 2003; 45: 2199
[40] Asahi H, Kushida T, Kimura M, Fukai H, Okano S.  Corrosion, 1999; 55: 644
[41] Dong C F, Li X G, Liu Z Y, Zhang Y R.  J Alloys Compd, 2009; 48: 966
[42] Kwster F, Bohnenkamq K, Engell H J.  Werkstoffe Korrosion, 1978; 29: 699
[43] Wang W, Shan Y, Yang K.  Mater Sci Eng, 2009; A502: 38
[44] Ogundele G I, White W E.  Corrosion, 1986; 42: 71
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[5] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[6] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[7] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[8] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[9] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[10] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[11] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[12] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[13] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[14] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[15] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
No Suggested Reading articles found!