Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1457-1464    DOI: 10.11900/0412.1961.2015.00085
Current Issue | Archive | Adv Search |
PLASTIC STRAIN HETEROGENEITY AND WORK HARDENING OF Ni SINGLE CRYSTALS
Xiaogang WANG(),Chao JIANG,Xu HAN
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University,Changsha 410082
Cite this article: 

Xiaogang WANG,Chao JIANG,Xu HAN. PLASTIC STRAIN HETEROGENEITY AND WORK HARDENING OF Ni SINGLE CRYSTALS. Acta Metall Sin, 2015, 51(12): 1457-1464.

Download:  HTML  PDF(1017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metals exhibit inhomogeneous deformation features under plastic strain, leading to the appearance and evolution of the deformation bands. The quantitative characterization of this effect is significant for an in-depth understanding of the plastic deformation and strengthening mechanisms of metals. In this work, the full-field strain information are obtained using digital image correlation method, and the work hardening behaviour in Ni single crystals is investigated from the angle of strain heterogeneity. First, a digital image correlation method, adapted for characterizing single crystal deformation, is proposed for the precise evaluation of strain field. The tensile test results show that the plastic strain in Ni single crystal manifests a distinct localization characteristic, which is closely linked to the slip band formation and development process. Based on the characteristics of the strain field evolution, 3 deformation regimes can be determined, which demonstrate a one-to-one correspondence to the 3 work hardening stages of the material. Some reasonable interpretations of their correlation are proposed within the framework of dislocation theories, which are verified through the experimental observations on the microstructure evolution of the material.

Key words:  Ni single crystal      work hardening      plastic deformation      digital image correlation      heterogeneity     
Fund: Supported by National Natural Science Foundation of China (No.11172096) and Foundation for the Author of National Excellent Doctoral Dissertation of Higher Education from the Ministry of Education of China (No.201235)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00085     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1457

Fig.1  Schematic of geometric dimensions of the specimen (unit: mm)
Fig.2  Surface morphology of the specimen after deformation obtained by digital camera
Fig.3  Axial (a) and transverse (b) displacement fields in the final deformation state
Fig.4  Axial stress-strain curve and equivalent von Mises strain fields (insets) for the labeled points
Fig.5  Representative equivalent von Mises strain (eeq) fields for the deformation regimes I (a), Ⅱ (b) and ⅡI (c)
Fig.6  Distribution of εeq by band under the deformation regimes I, Ⅱ and ⅡI
Fig.7  Evolution of sensitive index (sB) during the tensile test and determination of the 3 deformation regimes
Fig.8  Shear stress-strain (t-g) and work hardening rate-strain (q-g) curves and work hardening stages
Fig.9  Dislocation densities under different strain levels (rw—density of dislocation walls, rc—density of dislocation cells, rt—overall dislocation density of material)
[1] Taylor G. Proc Roy Soc, 1934; 145A: 362
[2] Schmid E, Boas I W. Plasticity of Crystals. London: Chapman and Hall Ltd., 1950: 8
[3] Kocks U, Mecking H. Prog Mater Sci, 2003; 48: 171
[4] Sevillano J G. In: Mughrabi H ed., Plastic Deformation and Fracture of Materials. Weinheim: VCH, 1993: 23
[5] Li X W, Wang Z G, Sun S G, Wu S D, Li S X, Li G Y. Acta Metall Sin, 1998; 34: 552
[5] (李小武, 王中光, 孙守光, 吴世丁, 李守新, 李广义. 金属学报, 1998; 34: 552)
[6] Zhang Z F, Duan Q Q, Wang Z G. Acta Metall Sin, 2005; 41: 1143
[6] (张哲峰, 段启强, 王中光. 金属学报, 2005; 41: 1143)
[7] Magid K R, Florando J N, Lassila D H, LeBlanc M M, Tamura N, Morris J W. Philos Mag, 2009; 89: 77
[8] Shade P A, Wheeler R, Choi Y S, Uchic M D, Dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 4580
[9] Takamura J. Bull Jpn Inst Met, 1973; 12: 505
[10] Takamura J. Trans Jpn Inst Met, 1987; 28: 165
[11] Chu T C, Ranson W F, Sutton M A. Exp Mech, 1985; 25: 232
[12] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 2009: 81
[13] Wang H W, Kang Y L, Xie H P. Adv Mech Sin, 2005; 35: 195
[13] (王怀文, 亢一澜, 谢和平. 力学进展, 2005; 35: 195)
[14] Pan B. PhD Dissertation, Tsinghua University, Beijing, 2007
[14] (潘 兵. 清华大学博士学位论文, 北京, 2007)
[15] Grediac M, Hild F. Full-Field Measurements and Identification in Solid Mechanics. New York: Wiley, 2012: 157
[16] Florando J N, LeBlanc M M, Lassila D H. Scr Mater, 2007; 57: 537
[17] Zhao Z, Ramesh M, Raabe D, Cuiti?o A M, Radovitzky R. Int J Plast, 2008; 24: 2278
[18] Efstathiou C, Sehitoglu H, Lambros J. Int J Plast, 2010; 26: 93
[19] Field D P, Magid K R, Mastorakos I N, Florando J N, Lassila D H, Morris J W. Philos Mag, 2010; 90: 1451
[20] Du H F, Zeng P, Zhao J Q, Lei L P, Fang G, Qu T M. Acta Metall Sin, 2013; 49: 17
[20] (杜泓飞, 曾 攀, 赵加清, 雷丽萍, 方 刚, 瞿体明. 金属学报, 2013; 49: 17)
[21] Cai Y L, Fu S H, Wang Y H, Tian C G, Gao Y, Cheng T, Zhang Q C. Acta Metall Sin, 2014; 50: 1491
[21] (蔡玉龙, 符师桦, 王玉辉, 田成刚, 高 越, 程 腾, 张青川. 金属学报, 2014; 50: 1491)
[22] Tasan C C, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D. Acta Mater,?2014; 81: 386
[23] Zhang Y J. A Course of Computer Version. Beijing: Posts & Telecommunications Press, 2011: 189
[23] (章毓晋. 计算机视觉教程. 北京: 人民邮电出版社, 2011: 189)
[24] Efstathiou C, Sehitoglu H. Acta Mater, 2010; 58: 1479
[25] Besnard G, Hild F, Roux S. Exp Mech, 2006; 46: 789
[26] Lubliner J. Plasticity Theory. New York: Macmillan Publishing, 1990: 198
[27] Hirsch P B. Electron Microscopy of Thin Crystals. London: Butterworths, 1965: 286
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[4] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[9] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[13] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[14] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[15] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
No Suggested Reading articles found!