Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 315-324    DOI: 10.11900/0412.1961.2014.00424
Current Issue | Archive | Adv Search |
PRECIPITATION BEHAVIOR OF CARBIDE DURING HEATING PROCESS IN Nb AND Nb-Mo MICRO-ALLOYED STEELS
ZHANG Zhengyan1,2, LI Zhaodong1, YONG Qilong1(), SUN Xinjun1, WANG Zhenqiang3, WANG Guodong2
1 Department of Structural Steels, Central Iron and Steel Research Institure, Beijing 100081
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
3 Shougang Research Institute of Technology, Beijing 100043
Cite this article: 

ZHANG Zhengyan, LI Zhaodong, YONG Qilong, SUN Xinjun, WANG Zhenqiang, WANG Guodong. PRECIPITATION BEHAVIOR OF CARBIDE DURING HEATING PROCESS IN Nb AND Nb-Mo MICRO-ALLOYED STEELS. Acta Metall Sin, 2015, 51(3): 315-324.

Download:  HTML  PDF(7269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As an important carbide forming element, Nb plays an important role in steel. Precipitated Nb can restrain the austenite grain growth during soaking process and provide precipitation strengthening after g /a phase transformation. Precipitated or dissolved Nb can inhibit recrystallizaton of deformed austenite. Recently, both Nb and Mo are added in steel to enhance the role of Nb. However, these kinds of researches mostly focused on continual cooling process of g /a transformation or isothermal process during tempering, and precipitation behavior of MC-type carbide in steel containing Nb and Mo during reheating process and the effect of Mo on precipitation of NbC in ferrite were rarely reported. Therefore, in this work, precipitation behaviors of MC-type carbide and the synergistic effect of Nb and Mo in steel containing Nb or Nb-Mo during reheating process at the heat rate 20 ℃/min were investigated by means of Vickers hardness test, SEM, HRTEM and DSC. The results show that both Nb and Nb-Mo steels have hardness peaks at 300 and 700 ℃, which are attributed to the precipitation of e-carbide and MC-type carbide, respectively. The MC-type carbide precipitates at about 650 ℃ during reheating process, which is in a good agreement with the nose temperature of MC-type carbide calculated by Avrami equation. (Nb, Mo)C particle forming in Nb-Mo steel during precipitation has a small mismatch with ferrite matrix compared with NbC, leading to the decrease of interfacial energy. Thus, the precipitation kinetic of MC-type carbide in Nb-Mo steel is faster than that in Nb steel, which results in the denser and finer MC-type carbide and higher precipitation strengthening effect.

Key words:  carbide      precipitation      Vickers hardness      interfacial energy     
ZTFLH:  TG142  
Fund: Supported by National Basic Research Program of China (No.2010CB630805) and National Natural Science Foundation of China (No.51201036)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00424     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/315

Steel C Mn P S Si Al Mo Ti Nb N B Fe
Nb 0.036 1.35 ≤0.0034 ≤0.0057 0.024 0.012 - 0.010 0.1 0.004 0.0012 Bal.
Nb-Mo 0.042 1.38 ≤0.0040 ≤0.0060 0.016 0.014 0.19 0.015 0.1 0.004 0.0010 Bal.
Table 1  Chemical compositions of Nb and Nb-Mo microalloyed steels
Fig.1  Vickers hardness of Nb and Nb-Mo microalloyed steels after quenching at 1200 ℃ for 5 h followed by heating to 200~750 ℃
Fig.2  SEM images of Nb (a) and Nb-Mo (b) microalloyed steels quenched at 1200 ℃ for 5 h (M/A—martensite/austenite)
  
Fig.4  TEM bright (a), dark (b) field images and SAED pattern (c) of M/A island in quenched Nb-Mo microalloyed steel and TEM image (d), SAED pattern (e) and EDS spectrum (f) of e-carbide in Nb-Mo microalloyed steel when heated to 300 ℃ followed by water quenching
Fig.5  TEM images of Nb (a~c) and Nb-Mo (d~f) steels heated to 500 ℃ (a, d), 600 ℃ (b, e) and 700 ℃ (c, f)
Fig.6  Morphologies (a, b), HRTEM images (c, d) and EDS spectra (e, f) of precipitates in Nb (a, c, e) and Nb-Mo (b, d, f) microalloyed steels (a—lattice constant)
Fig.7  DSC curves of Nb and Nb-Mo microalloyed steels during heating from 150 to 400 ℃
Fig.8  Lattice parameter of (NbxMo1-x)C varied with atomic fraction of Mo in (NbxMo1-x)C
Fig.9  Variation of interfacial energy between (NbxMo1-x)C and ferrite with temperatures
Fig.10  Variation of critical nucleation energy ΔGc (a) and critical nucleation size dc (b) of (NbxMo1-x)C depending with temperatures during heating process
Fig.11  Precipitation-temperature-time (PTT) curves of (NbxMo1-x)C during heating process (t0.05—the time when the mass fraction of the precipitation of (NbxMo1-x)C reaches 5%, t0—constant irrelevant to time)
[1] Yong Q L,Ma M T,Wu B R.Micro-Alloyed Steels-Physical Mechanical Metallurgy. Beijing: China Machine Press, 1989: 30
(雍岐龙,马鸣图,吴宝榕. 微合金钢-物理和力学冶金. 北京: 机械工业出版社, 1989: 30)
[2] De Ardo A J. In: Fu J Y, Wang W Z eds., Niobium Science & Technology. Beijing: Metallurgical Industry Press, 2003: 271
(De Ardo A J. 见:付俊岩, 王伟哲主编, 铌科学与技术. 北京: 冶金工业出版社, 2003: 271)
[3] Rainforth W M, Black M P, Higginson R L, Palmiere E J, Sellars C M, Prabst I, Warbichler P, Hofer F. Acta Mater, 2002; 50: 735
[4] Cao Y B, Xiao F R, Qiao G Y, Huang C J, Zhang X B, Wu Z X, Liao B. Mater Sci Eng, 2012; A552: 502
[5] Zhang Z H, Liu Y N, Liang X K, She Y. Mater Sci Eng, 2008; A474: 254
[6] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[7] Weng Y Q. Ultra-Fine Grained Steels. Beijing: Metallurgical Industry Press, 2008: 58
(翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2008: 58)
[8] Huang G J, Kong X L, Guan J, An X G. Microalloying Technol, 2009; 3-4: 293
(黄国建, 孔祥磊, 关菊, 安晓光. 微合金化技术, 2009; 3-4: 293)
[9] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Microalloying Technol, 2009; 3-4; 427
(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 微合金化技术, 2009; 3-4: 427)
[10] Chijiiwa R, Tamehiro H, Yoshida Y, Funato K, Uemori R, Horii Y. Nippon Steel Tech Report, 1993; 58: 47
[11] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[12] Uemori R, Chijiiwa R, Tamehiro H, Moriawa H. Appl Surf Sci, 1994; 76-77: 255
[13] Yu H, Zhang D D, Xiao R T, Zhuo P, Li C M. J Univ Sci Technol Beijing, 2011; 33: 715
(于 浩, 张道达, 肖荣亭, 周 平, 李灿明. 北京科技大学学报, 2011; 33: 715 )
[14] Yang G W, Sun X J, Li Z D, Li X X, Yong Q L. Mater Sci Technol, 2013; 21: 118
(杨庚蔚, 孙新军, 李昭东, 李晓闲, 雍岐龙. 材料科学与工艺, 2013; 21: 118)
[15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[16] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
(刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[17] Liu Q D, Chu Y L, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1297
(刘庆冬, 褚于良, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1297)
[18] Yong Q L. Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 361
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 361)
[19] Olasolo M, Uranga P, Rodriguez J. M, Lopea. Mater Sci Eng, 2011; A528: 2559
[20] Duan L N, Chen Y, Liu Q Y, Jia S J, Jia C C. J Iron Steel Int, 2014; 21: 227
[21] Wang L J, Cai Q W, Wu H B, Yu W. J Univ Sci Technol Beijing, 2010; 32: 1150
(王立军, 蔡庆伍, 武会宾, 余 伟. 北京科技大学学报, 2010; 32: 1150)
[22] Pan J S,Tong J M,Tian M B. Fundamentals of Material Science. Beijing: Tsinghua University Press, 2011: 660
(潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 660)
[23] Cao J C, Yong Q L, Liu Q Y, Sun X J. Trans Mater Heat Treat, 2006; 27(5): 51
(曹建春, 雍岐龙, 刘清友, 孙新军. 材料热处理学报, 2006; 27(5): 51)
[24] Jang J H, Lee C H, Heo Y U, Suh D W. Acta Mater, 2012; 60: 208
[25] Sakuma T, Watanabe N, Nishizawa T. Trans JIM, 1980; 21: 159
[26] Zhao P,Xie F Z,Sun Z G.Materials Science Essentials. Harbin: Harbin Institute of Technology Press, 2009: 226
(赵 品,谢辅洲,孙振国.材料科学基础教程.哈尔滨: 哈尔滨工业大学出版社, 2009: 226)
[27] Wang Z Q, Yong Q L, Sun X J, Yang Z G, Li Z D, Zhang C, Weng Y Q. ISIJ Int, 2012; 52: 1661
[28] Denton A R, Ashcroft N W. Phys Rev, 1991; 43A: 3161
[29] Qadri S B, Fuller W W, Kihlstrom K E, Simon R W, Skelton E F, VanVechten D, Wolf S. A. J Vacuum Sci Technol, 1985; 3A: 664
[30] Willens R H, Buehler E, Matthias B T. Phys Rev, 1967; 159: 327
[31] Wang Z Q, Sun X J, Yang Z G, Yong Q L, Zhang C, Li Z D, Weng Y Q. Mater Sci Eng, 2013; A573: 84
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[11] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[12] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[13] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[14] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[15] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
No Suggested Reading articles found!