Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1269-1278    DOI: 10.11900/0412.1961.2014.00087
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CORROSION BEHAVIOR OF PCB-HASL IN NaHSO3/Na2SO3 SOLUTION
DING Kangkang, XIAO Kui(), ZOU Shiwen, DONG Chaofang, ZHAO Ruitao, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

DING Kangkang, XIAO Kui, ZOU Shiwen, DONG Chaofang, ZHAO Ruitao, LI Xiaogang. ELECTROCHEMICAL CORROSION BEHAVIOR OF PCB-HASL IN NaHSO3/Na2SO3 SOLUTION. Acta Metall Sin, 2014, 50(10): 1269-1278.

Download:  HTML  PDF(5571KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the innovation of electronic technology, integration and miniaturization become the future developing direction of printed circuit board (PCB). Meanwhile, the corrosion problems of PCB also stand out more clearly, and even trace amounts of corrosion products will have a serious impact on the reliability of PCB. Under the actual condition for use, like sulfur-containing industrial environment, due to the diurnal temperature variations or/and the temperature field fluctuations for PCB itself, condensation phenomenon is likely to occur. Furthermore, as a result of the moisture absorption effect of granular deposit or supersaturated humidity, a layer of electrolyte solution will be formed on the surface of PCB, causing electrochemical corrosion. In this work, electrochemical impedance spectroscopy (EIS) and scanning Kelvin probe (SKP) techniques were used to study the corrosion behavior and mechanism of hot air solder leveling printed circuit boards (PCB-HASL) in a simulated electrolyte 0.1 mol/L NaHSO3 and 0.1 mol/L NaHSO3/Na2SO3 solutions with different pH values, and the influences of immersion time and pH value on the change of corrosion mechanism were discussed. Meanwhile, with the aids of OM, SEM combined with EDS, the nucleation and propagation processes of corrosion products on the surface of PCB-HASL were observed and analyzed. SEM and EDS results showed that the corrosion behavior of PCB-HASL in acid simulation solution was similar to pitting corrosion, and the corrosion pits were in a state of accelerated expansion at the early immersion stage. The corrosion products mainly consisted of oxides and sulfates of Sn. EIS and SKP analysis indicated that the PCB-HASL surface could be activated by NaHSO3 solution and pitting nucleation process only occurred at the early immersion stage. In the neutral or alkaline solution system of NaHSO3/Na2SO3, pitting corrosion couldn't occur, and the transmission of the electrolyte to the electrode interface through the oxide film was the control step of the corrosion reaction.

Key words:  PCB      HASL      NaHSO3 solution      electrochemical corrosion      SKP     
Received:  25 February 2014     
ZTFLH:  TG174.4  
Fund: Supported by National Natural Science Foundation of China (No.51271032)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00087     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1269

Fig.1  OM images of hot air solder leveling printed circuit boards (PCB-HASL) immersed in 0.1 mol/L NaHSO3 solution for 0 h (a), 0.5 h (b), 3 h (c), 12 h (d), 36 h (e) and 120 h (f)
Fig.2  Variations of coverage ratio of corrosion products on PCB-HASL surface with immersion time (R—coverage ratios of corrosion products, t—immersion time)
Fig.3  SEM images of PCB-HASL after immersion times of 0.5 h (a), 3 h (b), 12 h (c), 36 h (d) and EDS analysis of area A (e), area B (f) in Fig.3c and area C in Fig.3d (g)
Fig.4  Surface Kelvin potentials distribution of PCB-HASL after immersed in 0.1 mol/L NaHSO3 solution for 0 h (a), 0.5 h (b), 3 h (c), 12 h (d), 36 h (e), 120 h (f) (Ekp—surface Kelvin potential)
Fig.5  Column diagram of Ekp distribution for PCB-HASL before immersion (a) and Gauss fitting curves after different immersion times (b)
Time / h m / V s
0 -0.5558 0.0228
0.5 -0.6312 0.0276
3 -0.6024 0.0316
12 -0.5393 0.0349
36 -0.4498 0.0320
120 -0.3197 0.0355
Table 1  Gauss fitting results of surface Ekp distribution
Fig.6  EIS and fitting curves of PCB-HASL immersed in 0.1 mol/L NaHSO3 for 0.5~6 h (a) and 12~120 h (b) (ZRe—real part of impedance, ZIm—imaginative part of impedance)
Fig.7  EIS equivalent circuits of PCB-HASL immersed in 0.1 mol/L NaHSO3 solution for 0.5~1 h (a), 2~12 h (b) and 24~120 h (c) (Rs—solution resistance, CPEf—film capacitor of surface oxides or/and corrosion product film, Rf—resistance of surface oxides or/and corrosion product film, RL—resistance related to the generating and dissolving process of surface film at pitting nuclear site, L—equivalent inductance related to thickness change of surface film at pitting nuclear site, CPEdl—electric double layer capacitance, Rct—charge transfer resistance, W—Warburg impedance)
Time
h
Rs
Ω·cm2
CPEf
S ? s n 1 ? c m - 2
n1 Rf
Ω·cm2
L
H·cm2
RL
Ω·cm2
CPEdl
S ? s n 2 ? c m - 2
n2 Rct
Ω·cm2
W
S·s5·cm-2
0.5 13.45 6.96×10-6 0.8687 1617 5.48×104 1.30×104 0.000078 0.8639 1014 0.004347
1 14.80 7.62×10-6 0.8798 1291 7.79×104 1.41×104 0.000147 0.8144 627.6 0.007080
2 14.09 1.23×10-5 0.8629 1057 - - 0.000538 0.8778 265.2 0.012620
3 14.33 1.57×10-5 0.8642 856.4 - - 0.001199 0.9109 190.8 0.012550
6 14.35 2.49×10-5 0.8748 769.4 - - 0.001360 1.0000 198.1 0.012980
12 15.02 3.90×10-5 0.8871 4231 - - 0.000966 0.9675 721.2 0.005176
24 11.83 1.07×10-4 0.9312 3229 - - 0.000162 0.8475 7817 -
36 19.26 1.02×10-4 0.9429 3435 - - 0.000141 0.8429 9405 -
72 14.15 1.30×10-4 0.9074 6213 - - 0.000251 0.8375 8179 -
120 18.86 7.82×10-4 0.7614 6418 - - 0.000155 0.9063 10000 -
Table 2  EIS fitting results of PCB-HASL immersed in 0.1 mol/L NaHSO3 solution for different times
Fig.8  OM images of PCB-HASL in 0.1 mol/L NaHSO3/Na2SO3 solution with different pH values
Fig.9  EIS results and fitting curves of PCB-HASL immersed in 0.1 mol/L NaHSO3/Na2SO3 with different pH values
Fig.10  EIS equivalent circuits of PCB-HASL in neutral or alkaline NaHSO3/Na2SO3 solution system (O—finite-layer diffusion impedance element)
Condition Rs
Ω·cm2
CPEf
S ? s n 1 ? c m - 2
n1 Rf
Ω·cm2
CPEdl
S ? s n 2 ? c m - 2
n2 Rct
Ω·cm2
W
S·s5·cm-2
O
S·s5·cm-2
B
s5
pH=6 15.83 1.35×10-5 0.8881 1914 6.6×10-4 1.0000 230 0.00958 - -
pH=7 8.95 1.87×10-5 0.9146 2532 2.4×10-4 1.0000 702 - 2.89×10-3 3.166
pH=8 12.53 1.49×10-5 0.9270 2332 2.0×10-4 0.7269 3951 - 1.48×10-3 5.851
Na2SO3 9.97 4.41×10-6 0.8467 1409 1.2×10-5 0.8207 64400 - 4.79×10-5 6.190
Table 3  EIS fitting results of PCB-HASL in 0.1 mol/L NaHSO3/Na2SO3 solution with different pH values
[1] Leygraf C, Graedel T.Atmospheric Corrosion. New York: John Wiley&Sons Inc, 2000: 142
[2] Zhao Y, Lin C J, Li Y, Du R G, Wang J R. Acta Phys-Chim Sin, 2007; 23: 1342
(赵 岩, 林昌健, 李 彦, 杜荣归, 王景润. 物理化学学报, 2007; 23: 1342)
[3] Huang H L, Dong Z H, Chen Z Y, Guo X P. Corros Sci, 2011; 53: 1230
[4] Zou S W, Li X G, Dong C F, Ding K K, Xiao K. Electrochim Acta, 2013; 114: 363
[5] Xiao K, Zou S W, Dong C F, Wu J S, Li X G. Sci Technol Rev, 2011; 29: 25
(肖 葵, 邹士文, 董超芳, 吴俊升, 李晓刚. 科技导报, 2011; 29: 25)
[6] Qi H, Ganesan S, Pecht M. Microelectron Reliab, 2008; 48: 663
[7] Shibutani T, Yu Q, Shiratori M, Pecht M G. Microelectron Reliab, 2008; 48: 1033
[8] Fukuda Y, Osterman M, Pecht M. Microelectron Reliab, 2007; 47: 88
[9] Park Y W, Sankara Narayanan T S N, Lee K Y. Tribol Int, 2008; 41: 616
[10] Ammar I A, Darwish S, Khalil M W, Galal A. Materialwissenschaft und Werkstofftechnik, 1983; 14: 330
[11] Jouen S, Hannoyer B, Piana O. Surf Interf Anal, 2002; 34: 192
[12] Muller J. PhD Dissertation, Université Paris Est Marne-La-Vallée, 2010
[13] Lundren G, Wernfors G, Yamaguchi T. Acta Crystallogr, 1982; 38B: 2357
[14] Ahmed M A K, Fjellvag H, Kjekshus A. Acta Chem Scand, 1998; 52: 305
[15] Zou S W, Li X G, Dong C F, Li H Y, Xiao K. Acta Metall Sin, 2012; 48: 687
(邹士文, 李晓刚, 董超芳, 李慧艳, 肖 葵. 金属学报, 2012; 48: 687)
[16] Sun M, Xiao K, Dong C F, Li X G, Zhong P. Acta Metall Sin, 2011; 47: 442
(孙 敏, 肖 葵, 董超芳, 李晓刚, 钟 平. 金属学报, 2011; 47: 442)
[17] Li P H. Master Thesis, University of Science and Technology Beijing, 2011
(李朴华. 北京科技大学硕士学位论文, 2011)
[18] Rohwerder M, Turcu F. Electrochim Acta, 2007; 53: 290
[19] Cao C N,Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 54
(曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 54)
[20] Chen Z Y. PhD Dissertation, Huazhong University of Science & Technology, Wuhan, 2010
(陈振宇. 华中科技大学博士学位论文, 武汉, 2010)
[21] Cao B. Master Thesis, Nanjing Technology University, 2007
(曹 斌. 南京工业大学硕士学位论文, 2007)
[22] Zhao W M, Wang Y, Xue J, Wu K Y. Acta Metall Sin, 2005; 41: 178
(赵卫民, 王 勇, 薛 锦, 吴开源. 金属学报, 2005; 41: 178)
[23] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. NewYork: Pergamon Press, 1966: 15
[24] Sasaki T, Kanagawa R, Ohtsuka T, Miura K. Corros Sci, 2003; 45: 847
[25] Yan Z, Xian A P. Trans Nonferrous Met Soc, 2012; 22: 1398
(颜 忠, 冼爱平. 中国有色金属学报, 2012; 22: 1398)
[26] Mori M, Miura K, Sasaki T, Ohtsuka T. Corros Sci, 2002; 44: 887
[27] Chang H, Chen H T, Li M Y, Wang L, Fu Y G. J Electron Mater, 2009; 38: 2170
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[3] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[4] WANG Yong, ZHENG Yugui, WANG Jianqiang, LI Meiling, SHEN Jun. PASSIVATION BEHAVIOR OF Fe-BASED AMORPHOUS METALLIC COATING IN NaCl AND H2SO4 SOLUTIONS[J]. 金属学报, 2015, 51(1): 49-56.
[5] LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. 金属学报, 2014, 50(2): 212-218.
[6] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
[7] ZHANG Yacong WANG Jincheng LU Wenquan. CORROSION BEHAVIOR OF Mg-Zn-Y-Zr ALLOYS IN NaCl SOLUTION[J]. 金属学报, 2011, 47(9): 1174-1180.
No Suggested Reading articles found!