Please wait a minute...
金属学报  2008, Vol. 44 Issue (10): 1271-1276     
  论文 本期目录 | 过刊浏览 |
内压与焊接残余应力共同作用下高温管道蠕变有限元分析
张国栋;周昌玉;薛吉林
南京工业大学机械与动力工程学院
Finite Element Analysis of High Temperature Piping Creep for Considering the Effect of Inner Pressure and Welding Residual Stress
Guo-Dong ZHANG
南京工业大学
引用本文:

张国栋; 周昌玉; 薛吉林 . 内压与焊接残余应力共同作用下高温管道蠕变有限元分析[J]. 金属学报, 2008, 44(10): 1271-1276 .
, , . Finite Element Analysis of High Temperature Piping Creep for Considering the Effect of Inner Pressure and Welding Residual Stress[J]. Acta Metall Sin, 2008, 44(10): 1271-1276 .

全文: PDF(2286 KB)  
摘要: 利用大型有限元分析软件Abaqus的多次顺次耦合功能,先对P91钢高温主蒸汽管道焊接接头焊态和焊后热处理状态进行残余应力分析, 然后采用Norton蠕变本构关系,根据P91耐热钢在625℃下焊缝、热影响区和母材的不同蠕变参数,对内压以及内压与热处理后残余应力共同作用下的接头蠕变进行有限元分析,分别得到了焊接残余应力和焊后热处理残余应力的分布规律,同时预测了在高温环境下服役105h后蠕变应变分布. 结果表明,由于高温管道的壁厚以及约束等影响, 焊后产生了较大的焊接残余应力,通过焊后热处理可以有效地降低焊接残余应力.但由于热处理残余应力的存在, 仍对高温管道焊接接头的蠕变有较大影响,并且在焊缝与热影响区的交界处存在着较大的蠕变应变.
关键词 高温管道焊接残余应力    
Abstract:According to Norton creep constitutive equation and different creep parameters of welding material, heat-affected zone material and parent material, welding residual stress, post weld heat treatment(PWHT) residual stress and creep under inner pressure and PWHT residual stress of the welded joint of P91 steel high temperature piping were analyzed by ABAQUS finite element code. The distribution of welding residual stress and PWHT residual stress was obtained. Creep strain distribution after 100,000 hours and dangerous position of the welded joint were predicted. The results show the higher welding residual stress is in the welded joint for the piping wall thickness and constraints. And the welding residual stress can be reduced effectively by the method of PWHT. But, because of the existence of PWHT residual stress, the creep strain is also influenced by the PWHT residual stress. The stress can not be neglected in the strength design of high temperature piping. And much higher creep strain is in the edge between welding seam and heat-affected zone. The presente work provides a reference for the design and predicting maintenance for high temperature piping.
Key wordsHigh temperature piping    Welding residual stress    PWHT    Creep    Finite element analysis
收稿日期: 2008-01-27     
ZTFLH:  TG111.8  
[1]Yang F,Zhang Y L,Ren Y N,Li W M.New Heat Resistant Steel Welding.Beijing:China Electric Power Press,2006:1 (杨富,章应霖,任永宁,李为民.新型耐热钢焊接.北京:中国电力出版社,2006:1)
[2]Jones D R H.Eng Failure Anal,2004;11:873
[3]Ray A K,Tiwari Y N,Roy P K,Chaudhuri S,Bose S C,Ghosh R N,Whittenberger J D.Mater Sci Eng,2007; A454-455:679
[4]Jeong C S,Bae S Y,Ki D H,Watanabe K,Lim B S.Mater Sci Eng,2007;A448-451:155
[5]Hyde T H,Becker A A,Sun W,Williams J A.Int J Press Vessels Piping,2005;82:509
[6]Hyde T H,Luo R,Becker A A.Int J Press Vessels Piping, 2005;82:625
[7]Hyde T H,Becker A A,Sun W,Williams J A.Int J Press Vessels Piping,2006,83:853
[8]Yang W Y,Li Z W.Acta Metall Sin,1999;35:721 (畅王玥,李志文.金属学报,1999;35:721)
[9]Zhang G D,Zhou C Y.Trans China Weld Inst,2007; 28(8):99 (张国栋,周昌玉.焊接学报,2007;28(8):99)
[10]HKS Inc.Abaqus User's Manual(Version 6.2).USA: Providence,RI,2000:593
[11]Yang C H,Hu A Z.Jiangxi Electr Power,2005;29(3):21 (杨初惠.胡安中.江西电力,2005,29(3):21)
[12]Teng T L,Lin C C.Int J Press Vessels Piping,1998;75: 857
[13]Lu A L,Shi Q Y,Zhao H Y,Wu A P,Cai Z P,Wang P. China Mech Eng,2000;11:201 (鹿安理,史清宇,赵海燕,吴爱萍,蔡志鹏.王鹏.中国机械工程,2000;11:201)
[14]Yaghi A H,Hyde T H,Backer A A,Williams J A,Sun W. J Mater Process Technol,2005;167:480
[15]Hyde T H,Backer A A,Sun W,Yaghi A,Williams J A, Concari S.In:Silva J F,Meguid S A ads.,5th Int Conf on Mechanics and Materials in Design,Porto-Portugal: University of Porto,2006:1
[16]Ying R C.Welding Theory and Metallic Material Weld- ing.Beijing:China Machine Press,2000:7 (英若采.熔焊原理及金属材料焊接.北京:机械工业出版社,2000:7)
[17]Zhang G D,Zhou C Y.Trans China Weld Inst,2006; 27(12):85 (张国栋.周昌玉.焊接学报,2006;27(12):85)
[18]Hyde T H,Sun W,Becker A A.Int J Press Vessels Piping, 2001;78:765
[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[3] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[4] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[5] 邓德安 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力[J]. 金属学报, 2010, 46(2): 195-200.
[6] 张国栋; 周昌玉 . 焊接接头残余应力及蠕变损伤的有限元模拟[J]. 金属学报, 2008, 44(7): 848-852 .
[7] 蒋文春; 巩建鸣; 唐建群; 陈虎; 涂善东 . 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42(11): 1221-1226 .