Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 337-341     
  论文 本期目录 | 过刊浏览 |
微米尺寸不锈钢的形变与疲劳行为的尺寸效应
张广平; 高岛和希;肥後矢吉
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳110016
Size Effects On Deformation And Fatigue Behavior Of A Micron-Sized Stainless Steel
ZHANG Guangping;TAKASHIMA Kazuki; HIGO Yakichi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

张广平; 高岛和希; 肥後矢吉 . 微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J]. 金属学报, 2005, 41(4): 337-341 .
, , . Size Effects On Deformation And Fatigue Behavior Of A Micron-Sized Stainless Steel[J]. Acta Metall Sin, 2005, 41(4): 337-341 .

全文: PDF(324 KB)  
摘要: 采用聚焦离子束溅射蚀刻加工了微米尺寸304不锈钢悬臂梁试样。利用静态及动态弯曲加载研究了微米尺寸材料的形变与疲劳开裂行为。结果表明:随薄膜厚度的减小,材料的屈服强度升高,塑性下降。屈服强度随悬壁梁厚度的变化关系与Hall-Petch晶粒强化关系相似。微小悬壁梁屈服强度的升高来源于小尺度材料在非均匀变形下引起的应变梯度贡献的增加;而塑性下降则归因于较薄薄膜的晶粒内较少的可动位错。疲劳裂纹从尖缺口处萌生的门槛值接近块体材料。
关键词 微米尺度形变疲劳    
Abstract:Micron-sized cantilever beams of a 304 stainless steel were fabricated by focused-ion-beam (FIB). The static bending and dynamic bending tests of the microbeams were carried out. The results show that with decreasing the beam thickness, the yield strength of the microbeam increases and the ductility decreases. The relation between the yield strength of the microbeam and beam thickness is similar to the Hall-Petch relation of the grain size strengthening. The increase in the yield strength of the thinner microbeam is attributed to the increase in the strain gradient contribution due to inhomogeneous deformation of the small dimensional material. The decrease in the ductility of the microbeam is attributed to fewer mobile dislocations in the grain. The threshold of the fatigue crack initiation from the notch of the microbeam is close to that of the bulk material.
Key wordsmicrometer-scale    deformation    fatigue damage
收稿日期: 2004-06-22     
ZTFLH:  TG111  
[1]Fujimasa I. Micromachines-A New Era in Mechanical Engineering, Oxford: Oxferd Science Publications, 2000
[2]Nix W D. Metall Trans, 1989; 20A: 2217
[3]Zhang G P, Takashima K, Shimojo M, Higo Y. Int J Mater Prod Technol, 2001; Suppl.l: 298
[4]Schwaiger R, Kraft O. Scr Mater, 1999; 41: 823
[5]Takashima K, Higo Y, Sugiura S, Shimojo M. Mater Trans, 2001; 42: 68
[6]Zhang G P, Schwaiger R, Volkert C A, Kraft O. Philos Mag Lett, 2003; 83: 477
[7]Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O. J Mater Res, 2005; 20: 201
[8]Takashima K, Maekawa S, Shimojo M, Higo Y, Sugiura S, Pfister B, Swain M V. In: Wu X R, Wang Z G, eds., Proceedings of the 7th International Fatigue Congress, UK Gradley Heath: High Education Press, 1999; Vol Ⅲ: 1871
[9]Zhang G P, Wang Z G, Li G Y. Acta Mater, 1997; 45: 1705
[10]Weihs T P, Hong S, Bravman J C, Nix W D. J Mater Res, 1998; 3: 391
[11]Kelegemur, M. H, Chaki, T. K. Int J Fatigue, 2001; 23: 169
[12]Benjamin D. Metals Handbook: Properties and Selection of Stainless Steels. Ohio. Metals Park: ASM, 1980: 19
[13]Takaki, S, Tanimoto, S, Tokunaga Y. Proceedings of Japan Institute of Metals Symposium. Nagoya, 1984: 162
[14]Lee H J, Zhang P, Bravman J C. Appl Phys Lett, 2004; 84: 915
[15]Gao H J. Scr Mater, 2003; 48: 113
[16]Keller R R, Phelps J M, Read D T. Mater Sci Eng, 1996; A214: 42
[17]Zhang G P, Takashima K, Shimojo M, Higo Y. Mater Lett, 2003; 57: 1555
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[14] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[15] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.