Please wait a minute...
金属学报  2004, Vol. 40 Issue (4): 421-428     
  论文 本期目录 | 过刊浏览 |
(Ti, Zr, Hf)--(Cu, Ni, Ag)--Al}多组元合金体系的机械驱动非晶化
张来昌 沈智奇 徐 坚
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
MECHANICALLY--DRIVEN AMORPHIZATION IN A (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al MULTICOMPONENT ALLOY SYSTEM
HANG Laichang; SHEN Zhiqi; XU Jian
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

张来昌; 沈智奇; 徐坚 . (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al}多组元合金体系的机械驱动非晶化[J]. 金属学报, 2004, 40(4): 421-428 .
, , . MECHANICALLY--DRIVEN AMORPHIZATION IN A (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al MULTICOMPONENT ALLOY SYSTEM[J]. Acta Metall Sin, 2004, 40(4): 421-428 .

全文: PDF(440 KB)  
摘要: 研究了由前过渡族金属和后过渡族金属按照等原子比替代的(Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10多组元合金在 机械研磨作用下的非晶化转变, 并与由熔体急冷制备的同一成分玻璃态合金进行了对比. 两种途径获得的玻璃态相似. 在机械研磨的稳态产物中, 仍残留有少量尺寸小于30 nm的晶体相颗粒, 即非晶化转变未能完全实现. 机械研磨形成的非晶相表现有明确的玻璃转变和约80 K宽的过冷液态温度区间, 晶化过程分两步进行, 第一步晶化转变完成后, 剩余的非晶相亦具有玻璃态行为, 呈现另一玻璃转变及约100 K宽的过冷液态温度区间.
关键词 机械合金化非晶态合金过冷液体    
Abstract:The glass formation under high--energy ball milling was investigated for a (Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10 high--order alloy system. For comparison, the glassy ribbon with the same composition was prepared using melt--spinning (MS) method as well. Structural features of the samples were characterized using X--ray diffraction, ransmission electron microscopy and differential scanning calorimetry. Mechanical alloying (MA) results in a formation of glassy alloy similar to that obtained by MS. But, the glass formation is incomplete and a small amount of unreated crystallites smaller than 30 nm in size still remains in the final product. Like the melt--spun glass, the ball--milled glassy alloy also exhibits a distinct glass transition and a wide supercooled liquid region of about 80 K. Crystallization of the glassy alloy is a two--step p rocess, regardless of the synthesis routes. After the primary crystallization is completed, the remaining amorphous phase shows a detectable glass transition and a large supercooled liquid region of about 100 K.
Key wordsmechanical alloying    amorphous alloy    supercooled liquid region
收稿日期: 2003-05-13     
ZTFLH:  TG139.8  
[1] Seidel M, Eckert J, Schultz L. J Appl Phys, 1995; 77: 5446
[2] Seidel M, Eckert J, Zueco-Rodrigo E, Schultz L. J Non-Cryst Solids, 1996; 205-207: 514
[3] Schlorke N, Eckert J, Schultz L. Mater Sci Eng, 1997;A226-228: 425
[4] Sagel A, Wundrelich R K, Perepezko J H, Fecht H J. ApplPhys Lett, 1997; 70: 580
[5] Sagel A, Wundrelich R K, Fecht H J. Mater Lett, 1997; 33: 123
[6] Zhang L C, Xu J, Ma E. J Mater Res, 2002; 17: 1743
[7] Kawamura Y, Kato H, Inoue A, Masumoto T. Appl PhysLett, 1995; 67: 2008
[8] Sordelet D J, Rozhkova E, Huang P, Wheelock P B, BesserM F, Kramer M J, Calvo-Dahlborg M, Dahlborg U. JMater Res, 2002; 17: 186
[9] Lee M H, Bae D H, Kim W T, Kim D H, Rozhkova E,Wheelock P B, Sordelet D J. J Non-Cryst Solids, 2003;315: 89
[10] Kim K B, Warren P J, Cantor B. J Non-Cryst Solids,2003; 317: 17
[11] Ma L, Wang L, Zhang T, Inoue A. Mater Trans, 2002; 43:277
[12] Massalski T B, Okamoto H, Subramanian P R, KacprzakL. Binary Alloy Phase Diagrams (2nd ed.), Material Park,Ohio: ASM Inetrnational, 1990
[13] Gachon J C, Dirand M, Hertz J. J Less-Common Met,1983; 92: 307
[14] Lee P Y, Koch C C. J Mater Sci, 1988; 23: 2837
[15] Altounian Z, Batalla E, Strom-Olsen J O, Walter J L. JAppl Phys, 1987; 61: 149
[16] Williamson G K, Hall W H. Acta Metall, 1953; 1: 22
[17] Inoue A, Tomioka H, Masumoto T. J Mater Sci, 1983; 18:153
[18] Weeber A, Bakker H. Physica, 1988; 153B: 93
[19] Koch C C. Mater Sci Forum, 1992; 88-90: 243
[20] Schwarz R B, Petrich R R, Saw C K. J Non-Cryst Solids,1985; 76: 281
[21] Schwarz R B. Mater Sci Forum, 1998; 269-272: 665
[22] Schwarz R B, Petrich R R. J Less-Common Met, 1988;140: 171
[23] Chen Y, Mibole M, Hazif R L, Martin G. Phys Rev, 1993;48B: 14
[24] Galy D, Chaffron L, Martin G. J Mater Res, 1997; 12:688
[25] Lee P Y, Koch C C. Appl Phys Lett, 1987; 50: 1578
[26] Seidel M, Eckert J, Bacher I. Reibold M, Schultz L. ActaMater, 2000; 48: 3657
[27] Sagel A, Wanderka N, Wundrelich R K, Schubert-BischoffP, Fecht H J. Scr Mater, 1998; 38: 163
[28] Bellon P, Averback R S. Phys Rev Lett, 1995; 74: 1819
[29] Sheng H W, Wilde G, Ma E. Acta Mater, 2002; 50: 475
[30] Lee D, Cheng J, Yuan M, Wagner C N J, Ardell A J. JAppl Phys, 1988; 64: 4772
[31] Haruyama O, Kuroda A, Asahi N. J Non-Cryst Solids,1992; 150: 483
[32] Damonte L C, Mendoza-Zelis L A, Deledda S, Eckert J.Mater Sci Eng, 2003; A343: 194
[33] Sordelet D J, Rozhkova E, Huang P, Besser M F, KramerM J. Appl Phys Lett, 2002; 80: 4735
[34] El-Eskandarany M S, Saida J, Inoue A. Acta Mater, 2002;50: 2725
[35] Inoue A, Chen S, Masumoto T. Mater Sci Eng, 1994;A179/180: 346
[36] Matsubara E, Sugiyama K, Shinohara A H, Waseda Y,Inoue A, Zhang T, Masumoto T. Mater Sci Eng, 1994;A179/180: 444
[37] Rubin J B, Schwarz R B. Phys Rev, 1994; 50B: 795
[38] Desre P J. Mater Trans JIM, 1997; 38: 583
[39] Koster U, Meinhardt J, Roos S, Rudiger A. Mater SciForum, 1996; 255-227: 311
[40] Baricco M, Spriano S, Chang I, Petrzhik M I, BattezzatiL. Mater Sci Eng, 2001; A304-306: 305
[1] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[2] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[3] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[4] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[5] 王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
[6] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[7] 董盼; 张甲; 常新春; 侯万良; 全明秀; 王建强 . Al--Co--Y体系中富 Al区非晶相的形成与结构演化[J]. 金属学报, 2008, 44(2): 227-232 .
[8] 刘元帅 徐坚. Ti-(Cu, Ni)-Sn合金形成金属玻璃的成分优化及其相关联的共晶反应[J]. 金属学报, 2008, 44(12): 1424-1430.
[9] 邓小霞; 程宏辉; 李慎兰; 吕曼祺; 陈德敏; 杨柯 . 吸、放氢循环对V及V0.9Cr0.1合金储氢性能的影响[J]. 金属学报, 2007, 43(9): 977-982 .
[10] 张来昌; 沈智奇; 徐坚 . Sn替代Si和B对Ti50Ni22Cu18Al4Si4B2合金机械研磨非晶化的促进作用[J]. 金属学报, 2004, 40(9): 981-986 .
[11] 张晓强; 徐; 坚 . 机械研磨形成W颗/La55Al25Cu10Ni5Co5金属玻璃基复合材料[J]. 金属学报, 2004, 40(6): 647-.
[12] 付广艳; 宋尽霞; 牛焱 . 机械合金化Ag-3OCr合金在0.1 MPa纯氧气中的氯化[J]. 金属学报, 2003, 39(9): 995-998 .
[13] 陈文智; 周少雄; 陈金昌 . 铁基-铁镍基非晶双金属的磁性及内应力模型[J]. 金属学报, 2003, 39(6): 592-596 .
[14] 王延玲; 徐坚; 杨锐 . 机械研磨Tix(Cu0.45Ni0.55)94-xSi4B2合金系的玻璃形成范围[J]. 金属学报, 2003, 39(4): 364-368 .
[15] 曾美琴; 张耀; 欧阳柳章; 罗堪昌; 朱敏 . 机械合金化制备的Al-Pb-Cu合金结构与摩擦性能[J]. 金属学报, 2002, 38(8): 814-818 .