Please wait a minute...
金属学报  2004, Vol. 40 Issue (4): 393-398     
  论文 本期目录 | 过刊浏览 |
管状样品中高温氢扩散系数的测定
刘 实 郑 华 贵全红 马爱华 于洪波 王隆保
中国科学院金属研究所; 沈阳 110016
MEASUREMENTS OF HYDROGEN DIFFUSION COEFFICIENT FOR TUBE SAMPLES AT MEDIUM AND HIGH TEMPERATURES
LIU Shi; ZHENG Hua; GUI Quanhong; MA Aihua; YU Hongbo; WANG Longbao
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

刘实; 郑华; 贵全红; 马爱华; 于洪波; 王隆保 . 管状样品中高温氢扩散系数的测定[J]. 金属学报, 2004, 40(4): 393-398 .
, , , , , . MEASUREMENTS OF HYDROGEN DIFFUSION COEFFICIENT FOR TUBE SAMPLES AT MEDIUM AND HIGH TEMPERATURES[J]. Acta Metall Sin, 2004, 40(4): 393-398 .

全文: PDF(211 KB)  
摘要: 采用气相渗透法测定了Cr18Ni10Ti奥氏体合金管材的氢扩散系数. 设计了合适的测试装置, 测试温度范围为360 --- 600℃. 分别对内表面涂铝及未涂铝的管材样品进行了中、高温度氢扩散系数测试. 用有限差分方法计算了管材样品氢渗透曲线和氢扩散系数--特征时间曲线, 从而能够处理扩散系数的测试数据. 涂铝管材的室温氢扩散系数为5.789X10 -20 m2/s, 氢扩散激活能为8.144X10 4 J/mol, 分别比未涂铝管材低5---6个数量级和高1倍.
关键词 氢扩散系数Cr18Ni10Ti管材    
Abstract:By using a specially designed device and gas permeation method, the hydrogen diffusion coefficients for the tube--shape samples of Cr18Ni10Ti austenite steel were measured. The testing temperature covers the range of 360---600℃. The curves of hydrogen permeation flux and the relation of hydrogen diffusion coefficients and specific time were simulated by finite difference method (FDM). According to the simulated curves the experiment data related to the hydrogen diffusion coefficients can be treated. The hydrogen diffusion coefficients for aluminum film inner coated tubes at room temperature is 5.789X10 -20 m2/s, its activation energy of hydrogen diffusion is 8.144X10 -20 J/mol, which are 5---6 orders lower and 1 times higher than those of uncoated tubes respectively.
Key wordshydrogen diffusion coefficient    Cr18Ni10Ti    tube
收稿日期: 2003-03-28     
ZTFLH:  TG172.8  
[1] Masui K, Yoshida H, Watanabe R. Trans ISIJ, 1979; 19: 547
[2] Tanabe T, Yamanishi Y, Imoto S. Mater Trans JIM, 1984;25: 1
[3] Devannathan M A V, Stanchurdki Z. Proc Royal Soc,1962; A2TO: 90
[4] Kalin B A, Yakushin V L, Fomina E P. Fusion Eng &Dev, 1998; 41: 119
[5] Hollenberg G W, Simonen E P, Terlain A. Fusion Eng &Des, 1995; 28: 190
[6] Wu E. J Electrochem Soc, 1987; 134: 2126
[7] McBreen J, Nanis L, Beck W. Ibid, 1966; 113: 1218
[8] Harhai J, Viswanathan T, Davis H. Trans Am Soc Met,1965; 58: 210
[9] Peixuan W, Jiashu S. Helium in Materials and the Permeation of Tritium. Beijing: National Defence IndustryPress, 2002: 69(王佩璇,宋家树.材料中的氦及氚渗透.北京:国防工业出版社,2002:69)
[1] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[2] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[3] 都祥元 苏国跃. 核电站控制棒驱动机构驱动杆用1Cr13厚壁管材成分选择与工艺优化[J]. 金属学报, 2011, 47(9): 1155-1158.
[4] 林艳丽 何祝斌 苑世剑. 管材自由胀形时胀形区轮廓形状的影响因素[J]. 金属学报, 2010, 46(6): 729-735.
[5] 甘春雷 刘雪峰 黄海友 谢建新. BFe10-1-1合金管材连续定向凝固制备工艺及组织力学性能[J]. 金属学报, 2010, 46(12): 1549-1556.
[6] 许泽建; 李玉龙; 李朋洲 . 0Cr18Ni10Ti不锈钢焊接接头的显微硬度研究[J]. 金属学报, 2008, 44(5): 636-640 .
[7] 许泽建; 李玉龙; 刘明爽; 李朋洲; 吴云刚 . 不锈钢0Cr18Ni10Ti焊接头高温、高应变率下的动态力学性能[J]. 金属学报, 2008, 44(1): 98-104 .