Please wait a minute...
金属学报  2004, Vol. 40 Issue (1): 103-108     
  论文 本期目录 | 过刊浏览 |
Zn粉含量及表面沾污对环氧富Zn漆电化学行为的影响
谢德明;胡吉明;童少平
浙江大学热能工程研究所
Influence Of Zinc Content And Surface Contamination On The Electrochemical Behaviors Of Epoxy Zinc--Rich Primer
XIE Deming;HU Jiming; TONG Shaoping
Institute for Thermal Power Engineering; Zhejiang University
引用本文:

谢德明; 胡吉明; 童少平 . Zn粉含量及表面沾污对环氧富Zn漆电化学行为的影响[J]. 金属学报, 2004, 40(1): 103-108 .
, , . Influence Of Zinc Content And Surface Contamination On The Electrochemical Behaviors Of Epoxy Zinc--Rich Primer[J]. Acta Metall Sin, 2004, 40(1): 103-108 .

全文: PDF(191 KB)  
摘要: 采用腐蚀电位、电化学阻抗谱(EIS)评价了Zn粉含量以及涂层/基体界面污染程度对环氧富Zn涂层的防腐蚀性能的影响并探索了富Zn涂层的失效机制. 实验结果表明, 当涂层中Zn含量较少时, Zn粉没有有效的阻挡作用. 通过对可能的阻抗模型的分析, 认为富Zn涂层的电化学阻抗谱的低频段是由Zn2+从金属表面穿过腐蚀产物的扩散控制. 涂层/基体界面污染不仅影响了环氧富Zn涂层的防腐蚀性能的发挥, 也加速了钢铁基体的腐蚀.
关键词 富Zn涂层电化学阻抗谱    
Abstract:The effect of zinc powder content and contamination of epoxy zinc--rich primer/substrate interface on the protective performance of the zinc--rich coatings was investigated by means of electrochemical impedance spectroscopy (EIS) and corrosion potential monitoring.The degradation mechanism of the zinc—rich coatings was elucidated.It was shown that effective barrier can not be formed in the coatings with low zinc content. The attack of zinc particles in zinc--rich coatings is explained in terms of diffusion control through the film of zinc corrosion products around the zinc particles. The surface contamination of the substrate is vital to the performance of the organic coatings protecting the substrate steel. The surface contamination will lead to not only the impairment of the performance of the zinc—rich coatings but also the acceleration of the degradation processes of the steel substrate.
Key wordsepoxy zinc--rich primer    electrochemical impedance spectroscopy
收稿日期: 1900-01-01     
ZTFLH:  TG174  
[1] Du C S. Corros Protect, 1999; 20(4) : 168, 153 (杜存山.腐蚀与防护.1999;20(4) :168,153)
[2] Kendig M K, Jeanjaquet S L, White J, Momsfeld F. Corrosion Protection by Organic Coatings. Vol. 87-2, Thousand Oaks, CA USA: The Electrochemical Society, 1987: 253
[3] Hare C H. J Protect Coat Linings, 1998; 15(8) : 29
[4] Zhang J Q, Cao C N. Corros Protect, 1998; 19(3) : 99 (张鉴清,曹楚南.腐蚀与防护,1998;19(3) :99)
[5] Feliu S, Barajas R, Bastidas J M, Morcillo M. J Coat Technol, 1989; 61(775) : 63
[6] Feliu S, Barajas R, Bastidas J M, Morcilto M. J Coat Technol, 1989; 61(775) : 71
[7] Uhlig H H, Revie R W. Corrosion and Corrosion Control. 3rd ed., New York: Wiley, 1985: 227
[8] Almeida E, Pereira D, Cabral A M, Morcillo M. J Oil Color Chem Associat, 1991; 21
[9] Faidi S E, Scantlebury J D, Bullivant P. Corros Sci, 1993; 35: 1319
[10] Feliu S Jr, Morcillo M, Feliu S. Corrosion, 2001; 57: 591
[11] Frydrych P J, Farrington G C, Townsend H E. Proc Electrochem Soc, 1987; 87(2) : 240
[12] Novoa X R, Izquierdo M, Merino P, Espada L, Mater Sci Forum, 1989; 44-45: 223
[13] Gervasi C A, Di Sarli A R, Cavalcanti E, Ferraz P. Bucharsky E C, Real S G, Vilche J R. Corros Sci, 1994; 36: 1963
[14] Izquierdo M, Novoa X R, Pena G, Espada L. Mater Sci Forum, 1992; 111-112: 257
[15] Zhang J Q. J Chin Soc Corros Protect, 1996; 16: 175 (张鉴清.中国腐蚀与防护学报, 1996: 16: 175)
[16] Hare Clive H. Paint Coat, 1982; (4) : 48
[17] Hare Clive H. Wright S J. J Coat Technol, 1982; 54(693) : 65
[18] Giudice C B, Linares M M. Surf Coat Int, 1997; (6) : 279
[19] Feliu S Jr, Morcillo M, Bastidas J M, Feliu S. J Coat Technol, 1991; 63(793) : 31
[20] Abreu C M, Izquierdo M, Keddam M, Novoa X R, Takenouti H. Electrochim Acta, 1996; 41: 2405
[21] Morcillo M, Barajas R, Feliu S, Bastidas J M. J Mater Sci, 1990; 25: 2441
[22] Xie D M. Ph D Thesis, Zhejiang University, Hangzhou, 2002: 32(谢德明.浙江大学博士学位论文,杭州,2002:32)
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[3] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[4] 魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
[5] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[6] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[7] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[8] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.
[9] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[10] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[11] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[12] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[13] 宋利晓 张昭 张鉴清 曹楚南. 纳米结构黑镍薄膜的电沉积机理[J]. 金属学报, 2011, 47(1): 123-128.
[14] 施锦杰 孙伟 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响[J]. 金属学报, 2011, 47(1): 17-24.
[15] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.