Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 526-533    DOI: 10.3724/SP.J.1037.2012.00079
  论文 本期目录 | 过刊浏览 |
热轧Mg-1Zn和Mg-1Y合金退火组织演变及静态再结晶行为
刚建伟1,施斌卿2,陈荣石2,柯伟2
1. 东北轻合金有限责任公司, 哈尔滨 150060
2. 中国科学院金属研究所腐蚀与防护国家重点实验室, 沈阳 110016
MICROSTRUCTURE EVOLUTION AND STATIC RECRYSTALLIZATION BEHAVIOR OF HOT-ROLLED Mg-1Zn AND Mg-1Y ALLOYS DURING ISOTHERMAL ANNEALING
GANG Jianwei1,SHI Binqing2, CHEN Rongshi2, KE Wei2
1. Northeast Light Alloy Limited Liability Company, Harbin 150060
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刚建伟,施斌卿,陈荣石,柯伟. 热轧Mg-1Zn和Mg-1Y合金退火组织演变及静态再结晶行为[J]. 金属学报, 2012, 48(5): 526-533.
, , , . MICROSTRUCTURE EVOLUTION AND STATIC RECRYSTALLIZATION BEHAVIOR OF HOT-ROLLED Mg-1Zn AND Mg-1Y ALLOYS DURING ISOTHERMAL ANNEALING[J]. Acta Metall Sin, 2012, 48(5): 526-533.

全文: PDF(6302 KB)  
摘要: 对比研究了高温轧制制备的Mg-1.02Zn及Mg-0.76Y(质量分数, %)合金在不同温度退火条件下的组织演变及静态再结晶和晶粒长大动力学行为. 结果表明, Mg-1Zn合金的轧制组织以剪切带和孪晶为主, 在剪切带和孪晶内伴随着动态再结晶; 而Mg-1Y合金的轧制组织中只有孪晶, 未观察到剪切带和再结晶发生. 退火过程中, Mg-1Zn合金静态再结晶过程主要受控于形核过程, 而Mg-1Y合金则既受控于形核过程又受控于长大过程. 利用经典的JMAK模型和长大模型分别描述了2种合金热轧制后的静态再结晶和晶粒长大动力学过程, 结果表明, 静态再结晶过程的Avrami因子n值与理想预测值偏离可能来自于再结晶的不均匀形核. 固溶稀土Y原子比Zn原子对晶界移动的拖曳作用更强, 导致Mg-1Y合金比Mg-1Zn合金晶粒长大因子n'更高.
关键词 Mg-Zn合金Mg-Y合金热轧制静态再结晶    
Abstract:Wrought Mg alloys alloyed with rare elements (RE) addition were deemed to be one of the most promising Mg alloys in industrial application, due to the formation of weakened texture and refined microstructure. Generally, the wrought Mg alloys with RE addition after normal thermal-mechanical processing possessed incompletely recrystallized microstructure, so it was necessary to research the subsequent annealing treatment for controlling the microstructure. Unfortunately, the corresponding investigations on the mentioned above were still limited. In this study, hot-rolled Mg-1.02Zn and Mg-0.76Y (mass fraction, %) alloys were selected to investigate the microstructure evolution, static recrystallization behavior and grain growth kinetics under different annealing treatments. The microstructure examination showed that hot-rolled Mg-1Zn alloy was composed of shear bands and twins with the occurrence of dynamic recrystallization; whereas only twins were observed in the hot-rolled Mg-1Y alloy, no shear bands and recrystallization were detected. That should be attributed to the difference in the deformation modes during rolling processing. After isothermal annealing for the two alloys, recrystallization occurred in some remaining twins, whereas no recrystallization took place in others. EBSD analysis revealed that low angle grain boundaries or orientation differences were observed in the remaining twins with recrystallization, suggesting that recrystallization should be associated with the levels of stored deformation energy. The process of static recrystallization and grain growth kinetics were described by the JMAK model and grain growth model, respectively. The process of static recrystallization for the Mg-1Zn alloy was mainly dominated by the process of nucleation; while that for the Mg-1Y alloy was both controlled by the process of nucleation and growth, resulting in finer grain size. Moreover, the results showed that the Avrami exponent of recrystallization n≈1 deviated from the expected value in theory n=4, which could be due to the non-random recrystallization sites in the deformed alloys. Lower value in the grain growth exponent n' was obtained for Mg-1Y alloy than that for Mg-1Zn alloy, which may be ascribed to the stronger dragging effect of the solute Y element on the grain boundaries than that of solute Zn element.
Key wordsMg-Znalloy    Mg-Yalloy    hot-rolling    static recrystallization
收稿日期: 2012-02-20     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金项目51105350和50874100资助

作者简介: 刚建伟, 男, 1967年生, 高级工程师
[1] Yan H, Xu S W, Chen R S, Kamado S, Honma T, Han E H.  Scr Mater, 2011; 64: 141

[2] Stanford N.  Mater Sci Eng, 2010; A527: 2669

[3] Stanford N, Barnett M R.  Scr Mater, 2008; 58: 179

[4] Stanford N, Barnett M R.  Mater Sci Eng, 2008; A496: 399

[5] Chino Y, Kado M, Mabuchi M.  Mater Sci Eng, 2008; A494: 343

[6] Chino Y, Sassa K, Mabuchi M.  Mater Sci Eng, 2009; A513-514: 394

[7] Barnett M R.  Mater Sci Eng, 2007; A464: 1

[8] Barnett M R.  Mater Sci Eng, 2007; A464: 8

[9] Chino Y, Kado M, Mabuchi M.  Acta Mater, 2008; 56: 387

[10] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D.  Scr Mater, 2010; 63: 725

[11] Mackenzie L W F, Pekguleryuz M O.  Scr Mater, 2008; 59: 665

[12] Humphreys F J, Hatherly M.  Recrystallization and Related Annealing Phenomena. Oxford: Pergamon; 1995

[13] Sandlobes S, Zaefferer S, Schestakow I, Yi S.  Acta Mater, 2011; 59: 429

[14] Cottam R, Robson J, Lorimer G, Davis B.  Mater Sci Eng, 2008; A485: 375

[15] Jager A, Lukac P, Gartnerova V, Haloda J, Dopita M.  Mater Sci Eng, 2006; A432: 20

[16] Xu S W, Matsumoto N, Kamado S, Honma T, Kojima Y.  Scr Mater, 2009; 61: 249

[17] Xu S W, Kamado S, Matsumoto N, Honma T, Kojima Y.  Mater Sci Eng, 2009; A527: 52

[18] Su C W, Lu L, Lai M O.  Philos Mag, 2009; 88: 181

[19] Chao H Y, Sun H F, Chen W Z, Wang E D.  Mater Charact, 2011; 62: 312

[20] Stanford N, Atwell D, Barnett M R.  Acta Mater, 2010; 58: 6773

[21] Burke J E, Turnbull D.  Progress in Metal Physics. London: Pergamon, 1952; 3: 220
 
[1] 黄洪涛 Godfrey Andrew 刘伟 唐瑞鹤 刘庆. 样品取向对AZ31镁合金静态再结晶行为的影响[J]. 金属学报, 2012, 48(8): 915-921.
[2] 王晓亮 李长荣 郭翠萍 杜振民 何维. Mg-Zn合金时效过程中GP区析出的热力学分析[J]. 金属学报, 2010, 46(5): 575-580.
[3] 高英俊 罗志荣 胡项英 黄创高. 相场方法模拟AZ31镁合金的静态再结晶过程[J]. 金属学报, 2010, 46(10): 1161-1172.
[4] 王健; 肖宏; 张志国 . 流变应力逆分析确定静态再结晶动力学模型[J]. 金属学报, 2008, 44(7): 837-842 .
[5] 张斌; 张鸿冰 . 35CrMo结构钢的热变形行为[J]. 金属学报, 2004, 40(10): 1109-1114 .