金属学报, 2024, 60(2): 167-178 DOI: 10.11900/0412.1961.2023.00026

研究论文

GH4151镍基高温合金 μ 相中的基面层错

龙江东1,2, 段慧超,1, 赵鹏1,2, 张瑞3, 郑涛1,2, 曲敬龙4,5, 崔传勇3, 杜奎1

1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2 中国科学技术大学 材料科学与工程学院 沈阳 110016

3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016

4 北京钢研高纳科技股份有限公司 北京 100081

5 四川钢研高纳锻造有限责任公司 德阳 618000

Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151

LONG Jiangdong1,2, DUAN Huichao,1, ZHAO Peng1,2, ZHANG Rui3, ZHENG Tao1,2, QU Jinglong4,5, CUI Chuanyong3, DU Kui1

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

4 Gaona Materials Co. Ltd., Beijing 100081, China

5 Sichuan CISRI Gaona Forging Co. Ltd., Deyang 618000, China

通讯作者: 段慧超,hcduan15s@imr.ac.cn,主要从事结构材料形变与相变的定量电子显微学研究

责任编辑: 李海兰

收稿日期: 2023-01-16   修回日期: 2023-02-26  

基金资助: 国家自然科学基金项目(52171020)
国家自然科学基金项目(91960202)
国家科技重大专项项目(2019VI00060120)

Corresponding authors: DUAN Huichao, Tel:(024)83978628, E-mail:hcduan15s@imr.ac.cn

Received: 2023-01-16   Revised: 2023-02-26  

Fund supported: National Natural Science Foundation of China(52171020)
National Natural Science Foundation of China(91960202)
National Science and Technology Major Project of China(2019VI00060120)

作者简介 About authors

龙江东,男,1998年生,硕士生

摘要

晶界析出相对变形高温合金的力学性能有重要影响。本工作采用像差校正透射电镜观察发现,μ相中存在大量基面层错,依据层错结构单元排列的不同将基面层错分为4类。与μ相结构相比,I型基面层错相当于一层平行四边形结构单元反向;II型基面层错相当于在I型基面层错的基础上缺失一层矩形结构单元,形成C14结构;μ相内单独缺失一层平行四边形结构单元或矩形结构单元后相应地会形成III型和IV型基面层错,分别形成完整Zr4Al3相和C15结构。其中,II型和IV型基面层错都会形成Laves相,统计发现前者的数量多于后者。第一性原理计算表明,这与II型基面层错(C14结构)的稳定性高于IV型基面层错(C15结构)有关。

关键词: 镍基变形高温合金; μ; 像差校正透射电镜; 基面层错; C14结构

Abstract

Wrought Ni-based superalloys are widely used in aviation and energy fields because of their excellent creep resistance, thermal stability, heat corrosion resistance, and oxidation resistance at high temperatures. The mechanical properties of wrought Ni-based superalloys are significantly affected by grain boundary precipitation. Among the grain boundary second phases, the topologically close-packed (TCP) phase is usually discovered in wrought superalloys with the addition of refractory metal elements. As a complex intermetallic compound with only tetrahedral interstices, the TCP phase is stacked with a high packing density of atoms, embodying low plasticity and high brittleness. Given these characteristics, the TCP phase tends to promote crack initiation and propagation during creep, thereby reducing the alloy's creep strength. Additionally, the formation of the TCP phase requires several refractory elements, thereby weakening the effect of the solid solution strengthening of the matrix. As a ubiquitous TCP phase in wrought superalloys, μ phases are represented by rectangular and parallelogram structural subunits, which are parallel to the basal plane of μ phases. Basal stacking faults (SFs) are the most common defects in the μ phase, and SFs with different stacking sequences will form different phases with corresponding structures and mechanical properties. The μ phases and their basal SFs in wrought Ni-based superalloy GH4151 were systematically studied by multifarious electron microscopy techniques, such as EDS and atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) of aberration-corrected TEM, revealing the structure and composition of the μ phase and the structure and distribution of numerous basal SFs in the μ phase. Based on the different arrangements of structural subunits, the basal SFs were divided into four types. Type I basal SF is equivalent to the μ phase with a layer of parallelogram structural subunit reversing to form two layers of microsymmetric structures, the reversed parallelogram structural subunit is symmetrical to the rectangular one; type II basal SF is equivalent to type I basal SF in the absence of a layer of the rectangular structural subunit, forming a C14 structure and microsymmetric structure; type III basal SF results from the absence of a layer of the parallelogram structural subunit in the μ phase, forming a complete Zr4Al3 phase; and type IV basal SF results from the absence of a layer of the rectangular structural subunit in the μ phase, forming a C15 structure. Among the four types of basal SFs, type II and type IV basal SFs form Laves phases, but the occurrence of the former is more than that of the latter. This finding is related to the stability of type II basal SF (C14 structure) over type IV basal SF (C15 structure) revealed by the first-principle calculations.

Keywords: wrought Ni-based superalloy; μ phase; aberration-corrected TEM; basal stacking fault; C14 structure

PDF (3753KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178 DOI:10.11900/0412.1961.2023.00026

LONG Jiangdong, DUAN Huichao, ZHAO Peng, ZHANG Rui, ZHENG Tao, QU Jinglong, CUI Chuanyong, DU Kui. Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151[J]. Acta Metallurgica Sinica, 2024, 60(2): 167-178 DOI:10.11900/0412.1961.2023.00026

镍基高温合金具有优异的高温热稳定性、耐热腐蚀、抗蠕变、抗高温氧化等综合性能,在飞机发动机和各种工业燃气轮机的热端部件中发挥着关键作用[1]。变形高温合金可能析出多种析出相,如碳化物、硼化物、拓扑密堆(TCP)相等,这些析出相对合金的性能有较大的影响[1,2]。镍基变形高温合金中常添加难熔金属元素,这些难熔金属元素在提高合金承稳能力的同时,也会导致脆性TCP相的析出[3,4]。TCP相对高温合金的影响主要集中在2方面:一是TCP相的析出会消耗大量合金元素,影响基体的固溶强化效果[5,6];二是TCP相作为一类仅有四面体间隙的复杂密堆结构,排列十分紧密,表现出塑性低和脆性高的特点,易在蠕变过程中促进裂纹萌生及扩展,从而降低合金的蠕变强度[7~13]

TCP相是有序分布的复杂金属间化合物,由2种或2种以上的非等径原子组成,小原子配位数为12,大原子的配位数可达到16[14,15]。科研人员[14~17]发现可以用主次层的方式表达TCP相,以TCP相中常见的μ相为例,沿着μ相的<112¯0>轴观察,将μ相分为主层和次层2部分。主层上为五角形原子排列,相邻主层反对称排列,因此主层上的原子也被称为五角反棱柱原子。在<0001>方向上,次层原子位于2层主层原子的中间;在{112¯0}面投影中,次层原子位于五角形的几何中心。根据次层原子之间构成的几何形状,将μ相的<112¯0>轴投影分为平行四边形结构单元(MgCu2层)或矩形结构单元(Zr4Al3层),常使用这些结构单元来分析μ相的结构与缺陷[18~20]。TCP相包括Laves相、μ相、P相和σ相等[2]。作为一种常见的五角反棱柱堆垛的TCP相,μ相常常存在于高温合金中[17,21~23]μ相为菱面体胞,一个晶胞内有13个原子,晶格常数a = 0.472~0.475 nm,c = 2.544~2.567 nm[7,24]μ相的理想化学配比为A7B6,其中A为VIII族过渡元素,如Fe、Co、Ni等,B为VB或VIB族过渡元素,如Mo、Nb、W等[22,25]

作为μ相中最为常见的缺陷,基面层错的不同堆垛方式会形成不同结构的相,从而影响合金的力学性能,因此得到广泛的关注和研究[17,21,22,24~26]。Zhu和Ye[21]通过选区电子衍射(SAED)研究了铁基高温合金中的μ相,发现μ相中存在大量基面层错。Carvalho等[26]进一步研究了Co-W合金中μ相的缺陷结构,结合高分辨透射电子显微镜(HRTEM)实验与模拟发现,μ相基面上存在随机分布的亚结构孪晶(subunit cell twins)。Hiraga等[17]利用HRTEM研究了Co-Mo合金中的μ相,发现上述平行于基面的亚结构孪晶可形成较厚的孪晶片层。Cheng等[24]采用像差校正高角度环形暗场扫描透射电子显微镜(HAADF-STEM)对长期蠕变后镍基单晶高温合金中的μ相进行研究,同样发现了上述提到的亚结构孪晶,并将其命名为I型基面层错。对μ相而言,其平行四边形和矩形结构单元为其不可或缺的基本结构单元[18],而亚结构孪晶只是2个平行四边形结构单元的镜面对称,对称的结构单元中缺少完整的矩形结构单元。为了不引起歧义的同时准确表现亚结构孪晶厚度较小和关于矩形结构单元对称的特征,这里统称其为微对称结构。根据Gao等[25]的研究结果,μ相除I型基面层错外,还可能存在另外2种基面层错,分别形成C14结构和Zr4Al3相;Ma等[22]也发现相同的研究结果。结合Cheng等[24]对I型基面层错的定义,将形成C14结构和Zr4Al3相的2种基面层错分别称为II型和III型基面层错。与I型和III型基面层错相比,II型基面层错因更易形成常见的Laves相而倍受关注[18,23,24,27]。Ye等[18,28]、Gao等[25]和Liu等[29]报道了块体μ相与Laves相共生的现象。Chen等[30]研究了W-Fe复合材料中的μ相,Laves相比μ相更稳定,μ相有转化为Laves相的倾向。相的稳定性与相转变有一定关系,稳定性决定了相变的方向[31]。除此之外,μ相与Laves相结构单元的组成中都包括平行四边形结构单元,元素组成中包含Mo、Nb、W等难熔金属元素。μ相与Laves相之间的稳定性关系及结构和成分上的相似性为μ相转变为Laves相奠定了基础。Shi等[27]研究了马氏体铸铁中的μ相,发现随着μ相向Laves相转变,马氏体板条的粗化速率降低,铸铁的高温性能得以提高。

上述研究利用HRTEM等手段研究了μ相中的基面层错,然而除已发现的3种基面层错外,μ相中是否还可能存在其他类型的基面层错,这些基面层错在μ相转变为Laves相的过程中又发挥着怎样的作用等一系列问题尚未解决。与变形高温合金In718相比,本工作所用的GH4151镍基高温合金中含有更多的难熔金属元素,因此析出了较多的μ相。实验以GH4151晶界处析出的μ相为研究对象,采用电子背散射衍射(EBSD)、SAED、像差校正透射电子显微镜(TEM)等手段研究了μ相的晶体结构,解析了μ相中不同种类的基面层错,探讨了基面层错数量存在差异的原因,并揭示了μ相到C14结构的转变机制。

1 实验方法

实验材料为经真空感应熔炼铸锭+ 1120℃挤压的GH4151合金,挤压能消除铸锭中的微孔并改善力学性能,其化学成分(质量分数,%)为:Al 3.7,Nb 3.5,W 2.5,Ti 2.7,Mo 4.5,Co 14.9,Cr 8.8,C 0.08,B 0.015,Ni余量。合金的热处理制度是:1130℃固溶2 h后空冷 + 850℃时效4 h后空冷 + 780℃时效16 h后空冷。

对热处理后的样品进行拉伸实验,拉伸试样直径为3 mm、长16 mm。将拉伸试样在Zwick Z100高温电子万能试验机上夹紧,加热至650℃并保温10 min后再进行拉伸实验,应变速率3 × 10-4 s-1,拉断后空冷至室温。采用线切割将拉伸试样螺栓段切取直径6 μm、长400 μm样品,经过磨抛处理后,使用4 g CuSO4 + 10 mL HCl + 20 mL H2O腐蚀液进行化学抛光。采用Verios 460扫描电镜(SEM)获取EBSD像,并利用Channel 5软件处理EBSD数据。

利用TJ100-SE电化学双喷减薄仪对50 μm厚的小圆片双喷减薄以制备TEM/STEM样品,试剂为10%高氯酸+ 90%乙醇溶液(体积分数),电压为25 V,温度为-35~-15℃。使用JEM-2100 TEM获得明场像和SAED花样,运行电压200 kV,采用的分析软件为GMS-3。使用Tecnai F30场发射TEM获得低倍HAADF-STEM像和X射线能量色散谱(EDS),电压300 kV,分析软件为TIA。使用配备SuperX-EDS探测器的Themis Cubed G2像差校正TEM获得原子分辨率HAADF-STEM像和化学成分,电压300 kV,采用的分析软件为Velox。

第一性原理计算在密度泛函的框架下进行,使用的程序为Quantum ESPRESSO软件包[32]。Perdew-Burke-Ernzerhof (PBE)形式的广义梯度近似(GGA)[33]被用来描述电子之间的交换关联作用。电子占据的Fermi展宽宽度为1.3606 × 10-1 eV,平面波的截断能为6.8028 × 102 eV。原子结构弛豫采用Broyden-Fletcher-Goldfarb-Shanno (BFGS)算法,结构弛豫的收敛条件为1.3606 × 10-2 eV/atom。电子自洽收敛的收敛标准为1.3606 × 10-7 eV/cell。Brillion区采用Monkhorst-Pack k点采样,k点的采样精度是2π × 0.01。

2 实验结果

2.1 晶界上的析出相

图1所示为GH4151合金晶界处的EBSD和TEM像。图1a中显示出不同衬度的晶粒,晶粒内部有生长孪晶,晶粒尺寸较小,长5~10 μm,宽5 μm左右。晶界处存在白亮的析出相,根据EBSD成像规则,这些析出相含有比基体更多的重元素。高倍TEM像显示(图1b),析出相呈棒状形态,长200~500 nm,宽50~150 nm。析出相上存在层状衬度差异,表明析出相内部可能存在面缺陷。

图1

图1   时效镍基变形高温合金GH4151样品的EBSD和TEM像

Fig.1   EBSD (a) and TEM (b) images of the wrought Ni-based superalloy GH4151 sample after aging


2.2 晶界处 μ 相的结构

为确定析出相的结构,倾转析出相至不同方向以获得不同晶带轴的SAED花样,如图2所示。图2中所有衍射斑都满足-h + k + l = 3n (h、k、l为晶面指数)的衍射发生条件,可确定为菱方结构μ相的SAED花样,μ相的空间群为R3¯m。根据图2中衍射斑的位置可求得μ相的各晶面间距d[34],在此基础上,通过 式(1)可进一步求出六角点阵下μ相的晶格常数a = 0.473 nm,c = 2.544 nm。

图2

图2   μ相的系列选区电子衍射(SAED)花样,对应的晶带轴分别为[022¯1]、[1¯101]和[2¯64¯1]

Fig.2   A series of selected area electron diffraction (SAED) patterns of μ phase obtained by tilting crystal. The corresponding crystal axes are [022¯1] (a), [1¯101] (b), and [2¯64¯1] (c), respectively


d2=a243h2+hk+k2+ac2l2

为确定μ相的元素种类,对其进行EDS分析,结果如图3所示。如图3a所示,μ相显示出比基体更亮的衬度,表明μ相中含有更多的重元素。元素分布结果表明(图3b~f),μ相中含Mo、W、Nb、Co、Cr等难熔金属元素。图3f的Mo元素面分布中,μ相与基体的衬度差别较大,说明μ相中Mo元素的含量与基体有较为明显的差异。EDS定量计算得到μ相成分(原子分数,%)为:Cr 21.29,Co 25.36,Ni 16.69,Nb 1.09,Mo 30.42,W 4.85,Ti 0.26。成分分析结果表明,Mo、W、Nb 3种大原子共占36.36%,说明μ相中存在大量大原子。

图3

图3   μ相的低倍高角度环形暗场扫描透射电子显微镜(HAADF-STEM)像及EDS元素分布图

Fig.3   Low magnification high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image (a) and EDS element maps of μ phase (b-f)


为进一步确定μ相的原子占位,对其进行原子级EDS分析,结果如图4所示。可见,μ相为有序占位的金属间化合物,进一步验证了μ相中存在Mo、W、Nb、Co、Cr、Ni等元素。图4b~e为HAADF-STEM像与相应元素面分布的叠加,通过叠加图可以更加直观地看出相应元素的占位。原子的尺寸不同,占位有所不同。大原子如Mo、Nb、W等处于2种结构单元中心处衬度较亮的位置,如图4abij所示。小原子如Co、Cr、Ni等处于2种结构单元的格点和平行四边形结构单元的棱心位置,如图4ceg所示。

图4

图4   μ相的原子级HAADF-STEM像及相应元素的面分布

Fig.4   Atomic-resolution HAADF-STEM image (a) and corresponding element maps (b-j) of μ phase (Figs.4b-e are the superpositions of HAADF-STEM images and corresponding element maps)


μ相[112¯0]方向的原子级HAADF-STEM像如图5a所示。箭头指向的位置1 (通道处)和位置2 (五角反棱柱处)为仅有的2种小原子位置,图5a下方的强度轮廓线表明,位置1的强度约为位置2处强度的2倍。考虑到不足0.5 nm的微小区域内厚度变化不大,因此可以判断位置1的原子柱密度为位置2的2倍。在此基础上,搭建μ相[112¯0]方向投影的原子级模型(图5b)并计算μ相的精确成分。当投影到[112¯0]方向上时,μ相可以看作是平行于(0003)基面的矩形(R)和平行四边形(P)结构单元交替排列而成,排列方式标记为PRPRPR。考虑到中心处原子柱密度是五角反棱柱处原子柱的2倍,可以算得平行四边形结构单元为L2S4 (即2个大原子,4个小原子),被称为MgCu2层,有时也被写为S2L或S4L2;矩形结构单元为L4S3 (即4个大原子,3个小原子),被称为Zr4Al3层,有时也被写为S3L4。因此,μ相的小大原子比为7∶6,写作S7L6。S是小原子,为Co、Cr、Ni;L是大原子,为Mo、W、Nb。

图5

图5   μ相[112¯0]方向的原子级HAADF-STEM像及沿着黄色线条的强度分布,及μ相[112¯0]方向的原子模型(洋红色箭头在图上标出了μ相晶格常数c,红色箭头指出了中心原子和五角反棱柱原子的位置,右下角插图为μ相内五角反棱柱原子和中心原子沿着[112¯0]方向的堆垛)

Fig.5   Atomic-resolution HAADF-STEM image of μ phase viewed along [112¯0] direction (The intensity profile of the atoms is shown below the panel) (a) and atomic model of μ phase viewed along [112¯0] direction (the magenta arrow shows the lattice constant c of μ phase; the red arrows indicate the positions of the central and pentagonal antiprism atoms; the figure at the lower right panel shows the stacking of pentagonal antiprism atoms and central atoms along [112¯0] direction of μ phase; R—rectangle structural subunit, P—parallelogram structural subunit) (b)


2.3 μ 相内的4类基面层错

图6a为棒状μ相的高倍TEM像,此时μ相处于[11¯00]轴。μ相内部存在明显层状衬度差异的面缺陷,结合图6b的SAED花样,这些面缺陷平行于μ相的(0003)基面。另外,在图6b中(0003)斑点上出现明显的拉长线。这些结果均表明μ相中存在(0003)基面缺陷。

图6

图6   μ相的TEM明场像及对应的SAED花样

Fig.6   Bright filed TEM image (a) and corresponding SAED pattern (b) of μ phase


为进一步分析基面缺陷的结构,使用像差校正原子级HAADF-STEM像对基面缺陷进行表征,结果如图7~10所示。如图7a所示,在沿[112¯0]方向原子级HAADF-STEM像中,除正向平行四边形结构单元P外,还观察到了反向平行四边形结构单元P′,如浅绿色格子所示。P′与P关于矩形结构单元R镜面对称,这与Cheng等[24]和Carvalho等[26]观察到的结果相同,即I型基面层错。图7b为根据实验结果搭建的I型基面层错的原子模型,从模型中可以看出I型基面层错相当于完整μ相中一个平行四边形结构单元沿着基面进行一次反向,形成了2个微对称结构,其中一个是PRP′,另一个是P′RP。

图7

图7   I型基面层错[112¯0]方向的原子级HAADF-STEM像及I型基面层错的原子模型

Fig.7   Atomic-resolution HAADF-STEM image of type I basal stacking fault (SF) of μ phase viewed along [112¯0] direction (a) and atomic model of type I basal SF (b)


图8

图8   μ相II型基面层错[112¯0]方向的原子级HAADF-STEM像及II型基面层错的原子模型

Fig.8   Atomic-resolution HAADF-STEM image of type II basal SF of μ phase viewed along [112¯0] direction (The red lines indicate the area of C14 structure; c2 is the lattice constant of C14 structure) (a) and atomic model of type II basal SF (b)


图9

图9   μ相中III型基面层错[112¯0]方向的原子级HAADF-STEM像及III型基面层错的原子模型

Fig.9   Atomic-resolution HAADF-STEM image of type III basal SFs of μ phase viewed along [112¯0] direction (a) and atomic model of type III basal SF (b)


图10

图10   μ相中IV型基面层错[112¯0]方向的原子级HAADF-STEM像及IV型基面层错的原子模型

Fig.10   Atomic-resolution HAADF-STEM image of type IV basal SF of μ phase viewed along [112¯0] direction (a) and atomic model of type IV basal SF (b)


此外,在图8a中还观察到一种与I型基面层错不同的层错,层错内正向平行四边形结构单元P与反向平行四边形结构单元P′直接相连,构成C14结构,如图中浅蓝色格子所示;同时也出现了排列为P'RP的微对称结构。本文将这种层错称之为II型基面层错。在图8a一个完整的C14晶胞中测量得到C14结构的晶格常数为a2 = 0.473 nm,c2 = 0.772 nm。C14结构与μ相完全共格,满足[112¯0] μ // [112¯0]C14、(0003) μ // (0002)C14的取向关系。图8b为根据实验结果搭建的II型基面层错原子模型,从模型中可以看出II型基面层错相当于在I型基面层错的基础上缺失了一层矩形结构单元,形成了C14结构PP′和微对称结构P′RP。

在沿[112¯0]方向原子级HAADF-STEM像(图9a)中,观察到了连续两层矩形结构单元直接相连的现象,构成了完整Zr4Al3相,如图中蓝色格子所示。本文将μ相内这种连续两层矩形结构单元直接相连的缺陷命名为III型基面层错。值得注意的是,Gao等[25]和Ma等[22]研究表明层错两端的平行四边形结构单元是同向的,为PRRP排列;而本工作中层错两端的2个平行四边形结构单元是反向的,为PRRP′排列。图9b为根据实验结果搭建的III型基面层错原子模型,从模型中可以看出III型基面层错为一层平行四边形结构单元缺失,两层矩形结构单元直接相连。

此外,还观察到了一种不同寻常的层错,如图10a所示,层错内两层平行四边形结构单元直接相连,构成排列为PP的C15结构,如图中紫色格子所示。本工作首次在实验中观察到这种类型的层错,将其命名为IV型基面层错。图10b为根据实验结果搭建的IV型基面层错原子模型,从模型中可以看出IV型基面层错可以看作μ相一层矩形结构单元缺失,两层平行四边形结构单元直接相连并构成C15结构。

3 分析讨论

3.1 μ 相中基面层错的稳定性

本工作共观察到了4类基面层错,它们结构上的不同导致其在μ相中有不同的表现形式。对51个基面层错进一步统计,结果为I型基面层错4个,II型36个,III型4个,IV型7个。统计结果表明,4类基面层错中,II型基面层错最多,IV型基面层错次之,I型和III型基面层错最少。II型和IV型基面层错数目较多可能与它们都形成Laves相有关。尽管这2种基面层错都会形成Laves相,但II型基面层错(C14结构)的数量远多于IV型基面层错(C15结构)。本工作通过第一性原理计算C14和C15结构的形成能,分析了不同类型层错数目存在差异的原因。由于Laves相(C14、C15)在μ相内部生成,为准确搭建其原子模型,需要结合μ相的成分推断Laves相的组成元素。结合元素分析的结果,Laves相中大原子以Mo为主,小原子以Cr和Co为代表,因此Laves相应为Cr2Mo或Co2Mo。因为无论Cr2Mo还是Co2Mo都可能形成C14和C15 2种结构,所以本工作分别以Cr2Mo和Co2Mo 2种元素组成搭建了C14和C15 2种结构,共4种模型。采用这4种模型进行第一性原理计算,计算结果如表1所示。结果表明,无论结构如何,Co2Mo的形成能都低于Cr2Mo,由此推断Laves相的组成为Co2Mo;与C15结构相比,C14结构的Co2Mo形成能更低,表明μ相更倾向于形成Co2Mo C14结构。此结论也可以从Co原子与C14相的结构相似性中加以验证。Co单质和C14结构均为密排六方P63/mmc空间群,Co原子能较好地融入C14结构的空间排列中,这种结构具有一定的稳定性。而C15结构为Fd3¯m空间群,Co原子难以融入。总之,II型基面层错频率较高与C14结构的形成能较低有关。

表1   C14和C15结构的形成能 (meV·atom-1)

Table 1  Formation energies of C14 and C15 structures

StructureC14C15
Cr2Mo10992
Co2Mo-128-103

新窗口打开| 下载CSV


3.2 μ 相转变为C14结构的机制

研究[27,30]表明,μ相是一种亚稳相,而Laves相是稳态相,μ相有转变为Laves相的倾向。从3.1节来看,尽管同为Laves相,但C14结构的稳定性高于C15结构,因此μ相能转化为C14结构。不同厚度C14结构的原子级HAADF-STEM像(图8a11)展现了μ相转变到C14结构的具体过程,该过程包含C14结构形核和长大2个阶段。在形核阶段,完整μ相中一层平行四边形结构单元反向,同时相邻的一层矩形结构单元缺失,即生成一层II型基面层错,最终形成一个晶胞厚度(c2)的C14结构,如图8a所示。形核完成后,在C14结构上端再生成一次II型基面层错就可以使C14结构生长一层至厚度1.5c2 (图11a)。在厚度1.5c2的基础上,只需要在C14结构下端缺失一层矩形结构单元可以使C14结构再生长一层达到2c2的厚度(图11b)。在此基础上,先后在C14结构上端缺失矩形结构单元和在下端生成II型基面层错就可以使厚度增加至3c2。因此,C14结构可通过两端交替生成一层II型基面层错(图8a~11a)和缺失一层矩形结构单元(图11ab)的方式进行生长。值得注意的是,图11a中C14结构上端若缺失一层矩形结构单元也可形成厚度2c2的C14结构,此时C14结构排列为PP′PP′ (由上到下),与图11b中P′PP′P的排列关于(11¯00)面镜面对称。进一步分析PP′PP′在上端的继续生长,通过上端形成一层II型基面层错可生长至P′PP′PP′,再缺失一层矩形结构单元可生长至PP′PP′PP′,与图11c中的结构完全相同,即通过另外一种路径实现了从图11a图11c的演化。即保持C14结构下端不变的同时在C14结构上端交替进行II型基面层错和缺失矩形结构单元,也能实现C14结构的稳定生长。综上所述,在完整μ相中进行一次II型基面层错能够实现C14结构的形核,形核完成后在C14结构的任意一端交替生成II型基面层错和缺失矩形结构单元都能实现C14结构的稳定生长。

图11

图11   不同厚度C14结构[112¯0]方向的原子级HAADF-STEM像

(a) 1.5c2 (b) 2c2 (c) 3c2

Fig.11   Atomic-resolution HAADF-STEM images of C14 structure with different thicknesses viewed along [112¯0] direction


4 结论

(1) GH4151镍基高温合金晶界处析出μ相。μ相属于菱方R3¯m空间群,晶格常数a = 0.473 nm,c = 2.544 nm。μ相为有序占位,符合小大原子比7∶6,写作S7L6

(2) μ相中存在4类基面层错。I型基面层错相当于完整μ相的一层平行四边形结构单元反向,形成2个微对称结构;II型基面层错相当于在I型基面层错基础上缺失一层矩形结构单元,形成C14结构和微对称结构;III型基面层错为完整μ相缺失一层平行四边形结构单元并形成完整Zr4Al3相;IV型基面层错为μ相缺失一层矩形结构单元并形成C15结构。

(3) II型和IV型基面层错都会导致Laves相的形成,统计发现前者的数目高于后者,第一性原理计算表明II型基面层错(C14结构)的高出现频率与其低形成能有关。

参考文献

Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 10

[本文引用: 2]

Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 286

[本文引用: 2]

郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2008: 286

[本文引用: 2]

Kuo K H, Ye H Q, Li D X.

Tetrahedrally close-packed phases in superalloys: New phases and domain structures observed by high-resolution electron microscopy

[J]. J. Mater. Sci., 1986, 21: 2597

DOI      URL     [本文引用: 1]

Giessen B C. Developments in the Structural Chemistry of Alloy Phases [M]. Cleveland: Springer, 1969: 30

[本文引用: 1]

Tian S G, Wang M G, Li T, et al.

Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys

[J]. Mater. Sci. Eng., 2010, A527: 5444

[本文引用: 1]

Volek A, Singer R F, Buergel R, et al.

Influence of topologically closed packed phase formation on creep rupture life of directionally solidified nickel-base superalloys

[J]. Metall. Mater. Trans., 2006, 37A: 405

[本文引用: 1]

Carvalho P A, De Hosson J T M.

Stacking faults in the Co7W6 isomorph of the μ phase

[J]. Scr. Mater., 2001, 45: 333

DOI      URL     [本文引用: 2]

Chisholm M F, Kumar S, Hazzledine P.

Dislocations in complex materials

[J]. Science, 2005, 307: 701

PMID     

Deformation of metals and alloys by dislocations gliding between well-separated slip planes is a well-understood process, but most crystal structures do not possess such simple geometric arrangements. Examples are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one structure to another is slow. On the basis of geometric and energetic considerations, a dislocation-based mechanism consisting of two shears in different directions on adjacent atomic planes has been used to explain both deformation and phase transformations in this class of materials. We report direct observations made by Z-contrast atomic resolution microscopy of stacking faults and dislocation cores in the Laves phase Cr2Hf. These results show that this complex dislocation scheme does indeed operate in this material. Knowledge gained of the dislocation core structure will enable improved understanding of deformation mechanisms and phase transformation kinetics in this and other complex structures.

Wang D, Zhang J, Lou L H.

On the role of μ phase during high temperature creep of a second generation directionally solidified superalloy

[J]. Mater. Sci. Eng., 2010, A527: 5161

Zhang Y C, Du K, Zhang W, et al.

Shear deformation determined by short-range configuration of atoms in topologically close-packed crystal

[J]. Acta Mater., 2019, 179: 396

DOI      URL    

Zhang W, Yu R, Du K, et al.

Undulating slip in Laves phase and implications for deformation in brittle materials

[J]. Phys. Rev. Lett., 2011, 106: 165505

DOI      URL    

Zhang Y C, Zhang W, Du B N, et al.

Shuffle and glide mechanisms of prismatic dislocations in a hexagonal C14-type Laves-phase intermetallic compound

[J]. Phys. Rev., 2020, 102B: 134117

Yang Z Q, Chisholm M F, Yang B, et al.

Role of crystal defects on brittleness of C15 Cr2Nb Laves phase

[J]. Acta Mater., 2012, 60: 2637

DOI      URL     [本文引用: 1]

Frank F C, Kasper J S.

Complex alloy structures regarded as sphere packings. I. Definitions and basic principles

[J]. Acta Crystallogr., 1958, 11: 184

DOI      URL     [本文引用: 2]

Frank F C, Kasper J S.

Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures

[J]. Acta Crystallogr., 1959, 12: 483

DOI      URL     [本文引用: 1]

Sinha A K.

Topologically close-packed structures of transition metal alloys

[J]. Prog. Mater. Sci., 1972, 15: 81

DOI      URL    

Hiraga K, Yamamoto T, Hirabayashi M.

Intermetallic compounds of the μ- and P-phases of Co7Mo6 studied by 1 MV electron microscopy

[J]. Trans. Jpn Inst. Met., 1983, 24: 421

DOI      URL     [本文引用: 4]

Ye H Q, Li D X, Kuo K H.

Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms I. Structure description and HREM images of the C14 Laves and μ phases

[J]. Philos. Mag., 1985, 51A: 829

[本文引用: 4]

Heggen M, Houben L, Feuerbacher M.

Plastic-deformation mechanism in complex solids

[J]. Nat. Mater., 2010, 9: 332

DOI      PMID     

In simple crystalline materials, plastic deformation mostly takes place by the movement of dislocations. Although the underlying mechanisms in these materials are well explored, in complex metallic alloys--crystalline solids containing up to thousands of atoms per unit cell--the defects and deformation mechanisms remain essentially unknown. Owing to the large lattice parameters of these materials, extended dislocation concepts are required. We investigated a typical complex metallic alloy with 156 atoms per unit cell using atomic-resolution aberration-corrected transmission electron microscopy. We found a highly complex deformation mechanism, based on the movement of a dislocation core mediating strain and separate escort defects. On deformation, the escort defects move along with the dislocation core and locally transform the material structure for the latter. This mechanism implies the coordinated movement of hundreds of atoms per elementary glide step, and nevertheless can be described by simple rearrangement of basic structural subunits.

Feuerbacher M, Balanetskyy S, Heggen M.

Novel metadislocation variants in orthorhombic Al-Pd-Fe

[J]. Acta. Mater., 2008, 56: 1849

DOI      URL     [本文引用: 1]

Zhu J, Ye H Q.

On the microstructure and its diffraction anomaly of the μ phase in superalloys

[J]. Scr. Metall. Mater., 1990, 24: 1861

DOI      URL     [本文引用: 3]

Ma S Y, Li X Q, Zhang J X, et al.

Atomic arrangement and formation of planar defects in the μ phase of Ni-base single crystal superalloys

[J]. J. Alloys Compd., 2018, 766: 775

DOI      URL     [本文引用: 4]

Li D X, Kuo K H.

Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms III. Domain boundary structures in the μ phase

[J]. Philos. Mag., 1985, 51A: 849

[本文引用: 2]

Cheng Y X, Wang G L, Liu J D, et al.

Atomic configurations of planar defects in μ phase in Ni-based superalloys

[J]. Scr. Mater., 2021, 193: 27

DOI      URL     [本文引用: 6]

Gao S, Liu Z Q, Li C F, et al.

In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

[J]. Acta. Mater., 2016, 110: 268

DOI      URL     [本文引用: 4]

Carvalho P A, Haarsma H S D, Kooi B J, et al.

HRTEM study of Co7W6 and its typical defect structure

[J]. Acta Mater., 2000, 48: 2703

DOI      URL     [本文引用: 3]

Shi T Y, Lu J C, Sun D S, et al.

A high N and W heat-resistant martensitic cast steel with balanced tensile strength and creep resistance achieved by Laves and μ intermetallics

[J]. J. Mater. Sci., 2022, 57: 12616

DOI      [本文引用: 3]

Ye H Q, Wang D N, Kuo K H.

Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms II. Domain boundary structures of the CI4 Laves phase

[J]. Philos. Mag., 1985, 51A: 839

[本文引用: 1]

Liu L R, Zhou B X, Wang Q F, et al.

Intergrowth structure of Laves within μ phases in Co-Al-W base superalloy

[J]. J. Alloys Compd., 2020, 844: 155822

DOI      URL     [本文引用: 1]

Chen H, Ye L, Han Y, et al.

Additive manufacturing of W-Fe composites using laser metal deposition: microstructure, phase transformation, and mechanical properties

[J]. Mater. Sci. Eng., 2021, A811: 141036

[本文引用: 2]

Mittemeijer E J. Fundamentals of Materials Science [M]. Berlin: Springer, 2010: 305

[本文引用: 1]

Giannozzi P, Baroni S, Bonini N, et al.

QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials

[J]. J. Phys. Condens. Matter, 2009, 21: 395502

DOI      URL     [本文引用: 1]

Perdew J P, Burke K, Ernzerhof M.

Generalized gradient approximation made simple

[J]. Phys. Rev. Lett., 1996, 77: 3865

DOI      PMID      [本文引用: 1]

Williams D B, Carter C B. Transmission Electron Microscopy [M]. 2nd Ed., New York: Springer, 2009: 419

[本文引用: 1]

/