Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 537-546    DOI: 10.11900/0412.1961.2017.00353
  本期目录 | 过刊浏览 |
低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀
邹佳男, 庞晓露, 高克玮()
北京科技大学材料物理与化学系 北京 100083
Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition
Jianan ZOU, Xiaolu PANG, Kewei GAO()
Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. Acta Metall Sin, 2018, 54(4): 537-546.

全文: PDF(15422 KB)   HTML
摘要: 

利用浸泡实验分别模拟了低合金钢3Cr和X70在含有超临界CO2的3.5%NaCl溶液和溶解有NaCl溶液的超临界CO2相中的缝隙腐蚀行为。采用SEM、EDS和3D显微镜分析了腐蚀产物膜的形貌和成分,运用失重法测试了不同环境下低合金钢的腐蚀速率。结果表明,在超临界CO2环境下低合金钢在缝隙内部腐蚀较轻,在缝隙边缘处发生了明显的腐蚀。这种缝隙腐蚀现象是由于缝隙内部与外部之间形成的电偶效应引起的。2种钢在超临界CO2相中的均匀腐蚀速率均低于局部腐蚀速率,在NaCl溶液中的情况则相反。在超临界CO2环境中,3Cr钢的耐均匀腐蚀性能优于X70钢,而耐局部腐蚀性能则劣于X70钢。2种钢缝隙腐蚀行为的差异主要是Cr含量不同造成的,而Cu在3Cr钢缝隙边缘处的富集可能对缝隙腐蚀过程起到了促进作用。

关键词 缝隙腐蚀超临界CO2低合金钢腐蚀机制    
Abstract

With the exploitation of high pressure gas fields and the development of carbon capture and storage (CCS) techniques, the corrosion problem of steels under CO2 environment has been paid more and more attention. To transportation easier and cost reduction, CO2 in pipelines and containers is usually pressured to a high pressure, such as supercritical state. The supercritical CO2 corrosion environment includes the CO2-saturated aqueous phase and the water-saturated supercritical CO2 (SC CO2) phase. Moreover, corrosive ions such as Cl- usually exist in CO2 corrosion environment, which could accelerate the occurrence of corrosion. Low alloy steels, widely used as pipelines and construction materials in oil/gas and CCS industries, are susceptible to corrosion in the aggressive environment that contains high-concentration ions and acidic gases, especially to severe localized corrosion. In this work, the crevice corrosion behavior of 3Cr and X70 steels exposed in supercritical CO2-saturated 3.5%NaCl solution and NaCl solution-saturated supercritical CO2 phase was investigated. SEM, EDS and 3D laser microscopy were used to analyze the corrosion product scale on the steel surface. The results show that both the steels occurred crevice corrosion on the edge of crevice, but slightly occurred corrosion inside the crevice. The crevice corrosion occurred due to the galvanic effect of areas inside and outside the crevice. In supercritical CO2 phase, 3Cr steel exhibited a higher uniform corrosion resistance than X70 steel, while the crevice corrosion resistance of 3Cr steel was lower than that of X70 steel. The different crevice corrosion behaviors between X70 and 3Cr steels might be attributed to the synergistic effect of elements Cr and Cu on enhancing the crevice corrosion.

Key wordscrevice corrosion    supercritical CO2    low alloy steel    corrosion mechanism
收稿日期: 2017-08-24     
ZTFLH:  TG172.9  
基金资助:国家重点研发计划资助项目No.2017YFB0702100和国家自然科学基金项目No.51771026
作者简介:

作者简介 邹佳男,男,1991年生,硕士生

图1  缝隙腐蚀试样示意图
Steel C Si Mn Cr Mo Ni Cu Fe
X70 0.06 0.18 1.50 0.02 1.70 0.12 0.11 Bal.
3Cr 0.14 0.28 0.51 2.68 0.16 0.17 0.04 Bal.
表1  X70和3Cr钢的化学成分
图2  腐蚀实验示意图
图3  3Cr钢在液相中浸泡240 h后腐蚀产物膜的SEM像
图4  X70钢在液相中浸泡240 h后腐蚀产物膜的SEM像
图5  3Cr和X70钢在液相中浸泡240 h的截面形貌以及对应的EDS线扫描结果
Element 3Cr X70
Inside Edge Outside Inside Edge Outside
C 17.89 16.39 15.84 25.97 23.39 22.21
O 42.64 40.43 44.54 45.72 49.68 52.52
Fe 26.66 17.69 18.72 27.37 25.73 24.05
Cr 12.25 24.89 20.34 0.05 0.06 0.06
Cu 0.05 0.38 0.07 0.11 0.15 0.13
表2  3Cr和X70钢在液相中浸泡240 h后腐蚀产物膜各部分的EDS分析
图6  3Cr和X70钢在液相中腐蚀后基体表面的去膜形貌
图7  3Cr钢在超临界CO2相中浸泡240 h后腐蚀产物膜的SEM像
图8  X70钢在超临界CO2相中浸泡240 h后腐蚀产物膜的SEM像
图9  超临界CO2相中3Cr和X70钢的截面形貌以及对应的线扫描结果
Element 3Cr X70
Inside Edge Outside Inside Edge Outside
C 16.25 18.19 20.13 19.56 19.69 20.76
O 41.69 41.43 44.35 51.87 51.59 49.31
Fe 27.55 21.42 18.26 27.56 28.14 29.16
Cr 14.17 18.74 16.54 0.04 0.07 0.03
Cu 0.04 0.44 0.05 0.18 0.31 0.22
表3  3Cr和X70钢在超临界CO2相中浸泡240 h后腐蚀产物膜各部分的EDS结果
图10  3Cr和X70钢在超临界CO2相中腐蚀后基体表面的去膜形貌
图11  在液相和超临界CO2相中腐蚀的3Cr和X70钢去膜后缝隙边缘处的3D形貌
图12  3Cr和X70钢在液相和超临界CO2相中腐蚀后的平均缝隙深度
图13  3Cr和X70钢在液相和超临界CO2相的均匀腐蚀速率和局部腐蚀速率
[1] Choi Y S, Young D, Ne?i? S, et al.Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review[J]. Int. J. Greenhouse Gas Control, 2013, 16: S70
[2] Carlès P.A brief review of the thermophysical properties of supercritical fluids[J]. J. Supercrit. Fluids, 2010, 53: 2
[3] Cui Z D, Wu S L, Li C F, et al.Corrosion behavior of oil tube steels under conditions of multiphase flow saturated with super-critical carbon dioxide[J]. Mater. Lett., 2004, 58: 1035
[4] Xia Z, Chou K C, Szklarska-Smialowska Z.Pitting corrosion of carbon steel in CO2-containing NaCl brine[J]. Corrosion, 1989, 45: 636
[5] Kermani M B, Morshed A B.Carbon dioxide corrosion in oil and gas production—A compendium[J]. Corrosion, 2003, 59: 659
[6] Parkins R N.Significance of pits, crevices, and cracks in environment-sensitive crack growth[J]. Mater. Sci. Technol., 1985, 1: 480
[7] Rangel C M, Fonseca I T, Leitao R A.Some aspects of the electrochemical behaviour of mild steel in carbonate/bicarbonate solutions[J]. Electrochim. Acta, 1986, 31: 1659
[8] Yang Y Z, Jiang Y M, Li J.In situ investigation of crevice corrosion on UNS-S32101 duplex stainless steel in sodium chloride solution[J]. Corros. Sci., 2013, 76: 163
[9] Li Y Z, Xu N, Liu G R, et al.Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid[J]. Corros. Sci., 2016, 112: 426
[10] Zhang G A, Cheng Y F.Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electrochim. Acta, 2011, 56: 1676
[11] Hu Q, Liu J, Zhang J, et al. Crevice corrosion behaviors of X52 carbon steel in chloride containing solutions [J]. Adv. Mater. Res., 2013, 652-654: 1432
[12] Nishimoto M, Ogawa J, Muto I, et al.Simultaneous visualization of pH and Cl- distributions inside the crevice of stainless steel[J]. Corros. Sci., 2016, 106: 298
[13] Naganuma A, Fushimi K, Azumi K, et al.Application of the multichannel electrode method to monitoring of corrosion of steel in an artificial crevice[J]. Corros. Sci., 2010, 52: 1179
[14] Wei L, Pang X L, Gao K W.Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems[J]. Corros. Sci., 2016, 111: 637
[15] Xu Q F, Gao K W, Lv W T, et al.Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution[J]. Corros. Sci., 2015, 102: 114
[16] Chen C Y, Lu M X, Zhao G X, et al.Mechanical properties of CO2 corrosion scale on N80 well tube steel[J]. Acta Metall. Sin., 2003, 39: 175(陈长风, 路民旭, 赵国仙等. N80油套管钢CO2腐蚀产物膜的力学性能[J]. 金属学报, 2003, 39: 175)
[17] Nesic S, Postlethwaite J, Olsen S.An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52: 280
[18] Spycher N, Pruess K.CO2-H2O mixtures in the geologic sequestration of CO2. II. Partitioning in chloride brines at 12~100 ℃ and up to 600 bar[J]. Geochim. Cosmochim. Acta, 2005, 69: 3309
[19] Choi Y S, Ne?i? S.Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
[20] Bi X M, Cao C N.The influence of pH value and Cl- concentration on the electrochemical behavior of Fe corrosion process in acid solutions[J]. J. Chin. Soc. Corros. Prot., 1983, 3: 199(毕新民, 曹楚南. pH值和氯离子浓度对铁在酸溶液中的腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 1983, 3: 199)
[21] Hu Q, Guo X P.Crevice corrosion behaviors of X52 carbon steel in CO2-saturated NaCl solution containing HAc[J]. Corros. Prot., 2010, 31(S1): 17(胡骞, 郭兴蓬. X52碳钢在含有HAc的CO2饱和NaCl溶液中的缝隙腐蚀研究[J]. 腐蚀与防护, 2010, 31(S1): 17)
[22] Song G L.Potential and current distributions of one-dimensional galvanic corrosion systems[J]. Corros. Sci., 2010, 52: 455
[23] Marcus P, Maurice V, Strehblow H H.Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure[J]. Corros. Sci., 2008, 50: 2698
[24] Lee J B.Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique[J]. Mater. Chem. Phys., 2006, 99: 224
[25] Choi Y S, Shim J J, Kim J G.Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J]. J. Alloys Compd., 2005, 391: 162
[1] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[2] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[3] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 方信贤,薛亚军,戴玉明,王章忠. Ni-W-Cu-P沉积机制及在酸性溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(11): 1432-1440.
[6] 刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[7] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[8] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[9] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[10] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[11] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[12] 孙冲, 孙建波, 王勇, 王世杰, 刘建新. 超临界CO2/油/水系统中油气管材钢的腐蚀机制*[J]. 金属学报, 2014, 50(7): 811-820.
[13] 徐秋发, 庞晓露, 刘泉林, 高克玮. 低合金钢和碳钢在90 ℃地下水模拟溶液中的缝隙腐蚀*[J]. 金属学报, 2014, 50(6): 659-666.
[14] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
[15] 喻巧红, 刘超, 庞晓露, 刘泉林, 高克玮. Q235焊接接头的缝隙腐蚀行为[J]. 金属学报, 2014, 50(11): 1319-1326.