Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 941-950    DOI: 10.3724/SP.J.1037.2012.00150
  论文 本期目录 | 过刊浏览 |
核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究
郦晓慧,王俭秋,韩恩厚,柯伟
中国科学院金属研究所腐蚀与防护国家重点实验室, 沈阳 110016
CORROSION BEHAVIOR OF NUCLEAR GRADE ALLOYS 690 AND 800 IN SIMULATED HIGH TEMPERATURE AND HIGH PRESSURE PRIMARY WATER OF PRESSURIZED WATER REACTOR
LI Xiaohui, WANG Jianqiu, HAN En–Hou, KE Wei
State Key laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

郦晓慧 王俭秋 韩恩厚 柯伟. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941-950.
, , , . CORROSION BEHAVIOR OF NUCLEAR GRADE ALLOYS 690 AND 800 IN SIMULATED HIGH TEMPERATURE AND HIGH PRESSURE PRIMARY WATER OF PRESSURIZED WATER REACTOR[J]. Acta Metall Sin, 2012, 48(8): 941-950.

全文: PDF(3861 KB)  
摘要: 在自行搭建的高温高压水循环回路系统中, 通过原位电化学测量, 结合SEM观察和XPS分析, 研究了核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水环境中的腐蚀行为. 结果表明, 690合金和800合金的自腐蚀电位随浸泡时间的延长而逐渐降低, 浸泡时间对690合金和800合金的阻抗谱影响并不明显. 经过408 h浸泡后, 690合金表面生成了大量针状氧化物,800合金表面则同时生成了针状氧化物和颗粒状氧化物. 690合金表面富Cr氧化层位于表面膜内侧, 而800合金的富Cr氧化层位于表面膜外侧. 在高温高压水中,690合金比800合金表现出更为优异的抗腐蚀能力. 浸泡实验后, 溶液中主要金属离子Ni2+,Cr3+和Fe3+的含量分别为0.1×10-6,0.1×10-6和0.3×10-6.
关键词 690合金 800合金 高温高压水 腐蚀    
Abstract:The corrosion behaviors of nuclear grade commercial alloys 690 and 800 were studied by in situ electrochemical measurements using a self–built high temperature and high pressure water loop system, combining with SEM observation and XPS analysis. The results show that the corrosion potentials of alloys 690 and 800 decrease gradually with immersion time increasing, while the immersion time has no obvious impact on the result from electrochemical impedance spectroscopy (EIS). A large number of needle–like oxides have been found on the surface of alloy 690 after being exposed to high temperature and high pressure water for 408 h. For alloy 800, except needle–like oxides, many particle oxides are also observed. For alloy 690, Cr is rich at inner side of oxide film, while it is rich at outer side of oxide film for alloy 800. Alloy 690 shows better corrosion resistance than alloy 800 in high temperature and high pressure water. After immersion experiment, the contents of Ni2+, Cr3+ and Fe3+ ions in the test water solutions are 0.1×10−6, 0.1×10−6 and 0.3×10−6, respectively
Key wordsalloy 690    alloy 800    high temperature and high pressure water    corrosion
收稿日期: 2012-03-20     
ZTFLH: 

TG172.82

 
基金资助:

国家重点基础研究发展计划项目2011CB610502和国家杰出青年科学基金项目51025104资助

作者简介: 郦晓慧, 男, 1984年生, 博士生
[1] Dutta R S. J Nucl Mater, 2009; 393: 343

[2] Staehle R W, Gorman J A. Corrosion, 2003; 59: 939

[3] Betova I, Bojinov M, Kinnunen P, Lundgren K, Saario T. Electrochim Acta, 2009; 54: 1056

[4] Montemor M F, Ferreira M G S, Hakiki N E, Belo M D C. Corros Sci, 2000; 42: 1635

[5] Hwang S S, Kim H P, Lee D H, Kim U C, Kim J S. J Nucl Mater, 1999; 275: 28

[6] Kim S W, Kim H P. Corros Sci, 2009; 51: 191

[7] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[8] Park I G, Lee C S, Hwang S S, Kim H P, Kim J S. Met Mater Int, 2005; 11: 401

[9] Li X H, Huang F, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 847

(郦晓慧, 黄发, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 847)

[10] Canut J M L, Maximovitch S, Dalard F. J Nucl Mater, 2004; 334: 13

[11] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976

[12] Carranza R M, Alvarez M G. Corros Sci, 1996; 38: 909

[13] Olmedo A M, Villegas M, Alvarez M G. J Nucl Mater, 1996; 229: 102

[14] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M. J Nucl Mater, 2010; 402: 147

[15] de Ara´ujo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochim Acta, 2011; 56: 7871

[16] Qiu Y B, Shoji T, Lu Z P. Corros Sci, 2011; 53: 1983

[17] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 3623

[18] Vaillant F, Buisine D, Prieux B. In: Airey G ed., Proc 7th Int Symp Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Breckenridge, Colorado, USA, 1995: 219

[19] Crum J, Scarberry R C. J Mater Energy Systems, 1982; 4: 125

[20] Bosch R W, F´eron D, Celis J P. Electrochemistry in Light Water Reactors, Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues. Cambridge: Woodhead Publishing in Materials, 2007: 3

[21] Li X H, Wang J Q, Han E H, Ke W. Chin Pat, ZL 201020521040.8, 2010

(郦晓慧, 王俭秋, 韩恩厚, 柯伟. 中国实用新型专利, ZL 201020521040.8, 2010)

[22] Sun H. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010

(孙华. 中国科学院金属研究所博士论文, 沈阳, 2010)

[23] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 908

[24] Bosch R W, Vankeerberghen M. Electrochim Acta, 2007; 52: 7538

[25] Bosch R W, W´eber M, Vankeerberghen M. J Nucl Mater, 2007; 360: 304

[26] Macak J, Sajdl P, Kucera P, Novotny R, Vosta J. Electrochim Acta, 2006; 51: 3566

[27] Li X H, Wang J Q, Han E H, Ke W. Corros Sci, 2012, submitted

[28] Dutta R S, Tewari R. Br Corros J, 1999; 34: 201

[29] Dutta R S, Lobo A, Purandare R, Kulkarni S K, Dey G K. Metall Mater Trans, 2002; 33A: 1437

[30] Dutta R S, Purandare R, Lobo A, Kulkarni S K, Dey G K. Corros Sci, 2004; 46: 2937

[31] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565

[32] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[33] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[34] Marcus P, Grimal J M. Corros Sci, 1992; 33: 805

[35] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 5

(李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 5)

[36] Robertson J. Corros Sci, 1991; 32: 443
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[7] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[8] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[15] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.