Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1465-1471    DOI: 10.11900/0412.1961.2015.00124
  本期目录 | 过刊浏览 |
形变及热处理对825合金管材晶界特征分布的影响*
赵清1,夏爽1(),周邦新1,白琴1,苏诚2,王宝顺2,蔡志刚2
1 上海大学材料科学与工程学院, 上海 200072
2 浙江久立特材科技股份有限公司, 湖州 313008
EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES
Qing ZHAO1,Shuang XIA1(),Bangxin ZHOU1,Qin BAI1,Cheng SU2,Baoshun WANG2,Zhigang CAI2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
2 Zhejiang Jiuli Hi-Tech Metals Co. Ltd., Huzhou 313008
引用本文:

赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
Qing ZHAO, Shuang XIA, Bangxin ZHOU, Qin BAI, Cheng SU, Baoshun WANG, Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. Acta Metall Sin, 2015, 51(12): 1465-1471.

全文: PDF(1244 KB)   HTML
摘要: 

采用工厂生产线上的冷拔机对镍基825合金管材进行冷拔加工后再退火, 进行晶界工程(GBE)处理. 利用EBSD和取向成像显微技术(OIM)研究了不同冷拔变形量和不同退火温度对825合金晶界特征分布(GBCD)的影响. 结果表明, 合金在冷拔变形5%, 1050 ℃退火10 min时, 低Σ值重合位置点阵(ΣCSL, coincidence site lattice, Σ≤29)晶界的比例可提高到75%以上(Palumbo-Aust标准), 同时形成大尺寸的“互有Σ3n取向关系晶粒的团簇”显微组织(n=1, 2, 3, ...). 随着再结晶退火前冷拔变形量的增加, 晶粒团簇的尺寸减小, 同时低ΣCSL晶界的比例也下降, 并且低ΣCSL晶界的比例随晶粒尺寸的增加而下降. 当合金经过5%的冷拔变形后, 在1050~1125 ℃退火处理10 min时的晶界特征分布无明显变化, 退火温度对合金的低ΣCSL晶界比例影响较小; 当经过3%, 7%和10%的冷拔变形后, 合金的低ΣCSL晶界比例随着退火温度的升高不断下降.

关键词 镍基825合金,晶界特征分布,低ΣCSL晶界,晶粒尺寸    
Abstract

Alloy 825 is widely used for chemical and petrochemical applications due to its good combination of mechanical properties and corrosion resistance. However, intergranular corrosion (IGC) is one of the serious problems for alloy 825 exposed to aggressive environments, which could result in unexpected failures and lead to huge losses. The grain boundary structure, which can partly be described by coincidence site lattice (CSL) model, can influence the grain boundary chemistry and the susceptibility to intergranular corrosion. The field of grain boundary engineering (GBE) has developed a lot over the last two decades since the concept of grain boundary design was proposed. The aim of GBE is to enhance the grain-boundary-related properties of materials by increasing the frequency of low ΣCSL (Σ≤29) grain boundaries (GBs) and tailoring the grain boundary network. It was reported that in some fcc materials with low stacking fault energy, such as Ni-based alloys, lead alloys, austenitic stainless steels and copper alloys, the frequency of low ΣCSL GBs can be greatly increased by using proper thermomechanical processing (TMP), and as a result the grain boundary related properties were greatly enhanced. In this work, GBE is applied to the manufacture of Ni-based alloy 825 tubes by cold drawing using a draw-bench on a factory production line and the subsequent annealing. The effect of thermomechanical processing on the grain boundary character distribution (GBCD) of alloy 825 was studied by means of the EBSD technique and orientation image microcopy (OIM). The results show that the proportion of low ΣCSL grain boundaries increase to more than 75% by the TMP after 5% cold drawing and subsequent annealing at 1050 ℃ for 10 min, and simultaneously the large-size highly-twinned grain-cluster microstructure is formed. The size of the grain-cluster and proportion of low ΣCSL grain boundaries decrease with the increase of pre-strain. The proportion of low ΣCSL grain boundaries decreases with the increase of the mean grain size. The annealing temperatures in the range of 1050~1125 ℃ have no obvious effect on the GBCD of the specimen with 5% cold drawing deformation; while the proportions of low ΣCSL GBs of the sample with 3%, 7% and 10% cold drawing deformation decrease with the increase of annealing temperature.

Key wordsNi-based alloy 825    grain boundary character distribution    low ΣCSL grain boundary    grain size
    
基金资助:* 国家重点基础研究发展计划项目2011CB610502 和上海市科委重点支撑项目13520500500 资助
图1  固溶态825合金管材的OM像、晶界分布图和晶粒取向分布图
图2  冷拔变形量及退火温度对825合金晶界特征分布的影响
图3  经不同冷拔变形量和退火温度处理后(Σ9+Σ27)/Σ3晶界比值
图4  经不同冷拔变形量及退火温度处理后的不同类型晶界图
图5  图4a中晶粒团簇C1的不同类型晶界图和晶粒取向分布图
图6  冷拔变形量对1050 ℃再结晶退火后825合金晶粒团簇尺寸的影响
[1] Yang J F, Fan F X, Li M, Bai Y. Develop Appl Mater, 2009; 24(4): 26
[1] (杨俊峰, 范芳雄, 李 墨, 白 杨. 材料开发与应用, 2009; 24(4): 26)
[2] Feng Y, He D L, Gong D S, Li F, Wu J X. J Chin Soc Corros Prot, 2013; 33 :164
[2] (冯 勇, 何德良, 龚德胜, 李 菲, 吴建新. 中国腐蚀与防护学报, 2013; 33: 164)
[3] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331
[4] Palumbo G, Erb U. MRS Bull, 1999; 24: 27
[5] Watanabe T, Tsurekawa S. Acta Mater, 1999; 47: 4171
[6] Kokawa H, Watanabe T, Karashima S. Philos Mag, 1981; 44A: 1239
[7] Hong Y B, Kokawa H, Zhan J W. Scr Mater, 2003; 49: 219
[8] Watanabe T. Res Mech, 1984; 11(1): 47
[9] Palumbo G, Lehockey E M, Lin P. JOM, 1998; 50(2): 40
[10] Cheung C, Erb U, Palumbo G. Mater Sci Eng, 1994; A185: 39
[11] Lehockey E M, Palumbo G, Lin P. Metall Mater Trans, 1998; 29A: 3069
[12] Palumbo G. US Pat, 5702543, 1997
[13] Thomson C B, Randle V. J Mater Sci, 1997; 32: 1909
[14] Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X. Mater Sci Eng, 2010; A527: 1571
[15] Xia S, Li H, Liu T G, Zhou B X. J Nucl Mater, 2011; 416: 303
[16] Kumar M, King W E, Schwartz A J. Acta Mater, 2000; 48: 2081
[17] Ding X, Chen W J. Shanghai Metall, 2006; 28(4): 14
[17] (丁 霞, 陈文觉. 上海金属, 2006; 28(4): 14)
[18] Palumbo G, Aust K T. Acta Metall, 1990; 38: 2343
[19] Liu T G, Xia S, Li H, Zhou B X, Bai Q, Su C, Cai Z G. J Mater Res, 2013; 28: 1165
[20] Liu T G, Xia S, Li H, Zhou B X, Bai Q. Mater Charact, 2014; 91: 89
[21] Kopezky C V, Andreeva A V, Sukhomlin G D. Acta Metall Mater, 1991; 39: 1603
[22] Gottstein G. Acta Met, 1984; 32: 1117
[23] Chen X P, Li L F, Sun H F, Wang L X, Liu Q. Mater Sci Eng, 2015; A622: 108
[24] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[25] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016
[26] Berger A, Wilbrandt P J, Ernst F. Prog Mater Sci, 1988; 32: 1
[27] Liu T G, Xia S, Li H, Zhou B X, Bai Q. Mater Lett, 2014; 133: 97
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[6] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[8] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[9] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[12] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[13] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[14] 李雄兵, 宋永锋, 倪培君, 刘锋. 面向晶粒尺寸的超声多尺度衰减评价方法[J]. 金属学报, 2015, 51(1): 121-128.
[15] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.