Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 823-830    DOI: 10.3724/SP.J.1037.2011.00206
  论文 本期目录 | 过刊浏览 |
打磨态690TT合金经不同时间浸泡后表面氧化膜结构分析
王俭秋,张志明
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES
ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张志明 王俭秋 韩恩厚 柯伟. 打磨态690TT合金经不同时间浸泡后表面氧化膜结构分析[J]. 金属学报, 2011, 47(7): 823-830.
, . ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES[J]. Acta Metall Sin, 2011, 47(7): 823-830.

全文: PDF(1610 KB)  
摘要: 利用多种分析手段深入分析了打磨处理的690TT合金在模拟压水堆一回路高温高压水环境中经不同时间浸泡后表面生长的氧化膜的微观结构. 结果表明, 从短期氧化到长期氧化, 氧化膜表面形貌变化不明显; 氧化膜主要由尖晶石结构的氧化物和单质Ni构成. 浸泡96和1440 h后, 氧化膜主要由富含Cr的氧化物构成. 浸泡720, 1440和2160 h后, 氧化膜均由外层、中间层和内层构成: 外层是分散的富含Ni和Fe的尖晶石结构的大颗粒氧化物; 中间层是致密的富含Cr的尖晶石结构的小颗粒氧化物; 内层是均匀连续的富含Cr的氧化物. 中间层和内层氧化物能对基体起到良好的保护作用; 随着氧化时间的延长, 保护层的平均生长速率逐渐降低. 打磨处理促进了690TT合金表面保护性氧化膜的生长.
关键词 690TT合金打磨处理浸泡时间氧化膜保护性结构    
Abstract:The morphologies and structures of surface oxide films grown on ground Ni base alloy 690TT after immersion in the simulated hydrogenated primary water of pressured water reactors (PWRs) for different times were analyzed by various methods. After immersion for 35 h,\linebreak the ground alloy 690TT was covered with compact oxide particles. With the increase of the immersion time, the sample surfaces were covered with scattered big oxide particles and compact small oxide particles. Regardless of the immersion time, the grown oxide films are composed of spinel oxides and metallic Ni. After immersion for 720, 1440 and 2160 h, the oxide films are composed of three layers: the outmost layer is the separated big oxide particles which are rich in Fe and Ni; the intermediate layer is the compact small oxide particles rich in Cr, Fe and Ni; the inner layer is the continuous Cr oxides. The peak decompositions of the XPS results revealed that the Cr oxides in the inner layer are probably Cr2O3. The intermediate and inner layers in the oxide films could restrain the outward diffusion of metal atoms and also the inward diffusion of the oxygen atoms and then protect the matrix from further corrosion well. The average corrosion rate of the intermediate and inner layer decreased gradually with the immersion time increasing. Grinding treatment accelerated the growth of protective oxide film on alloy 690TT in the studied solution.
Key wordsNi base alloy 690TT    grinding treatment    immersion time    oxide film    protective structure
收稿日期: 2011-04-06     
基金资助:

国家重点基础研究发展计划项目2011CB610502和国家自然科学基金项目51025104资助

作者简介: 张志明, 男, 1983年生, 博士生
[1] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯伟, 金属学报, 2010; 46: 1379)

[2] Zhou B X, Han E H. The Invited Lecture at the 30th annual Celebration Meeting for the Foundation of Chinese Society for Corrosion and Protection and the 5th National Conference for Corrosion and Protection, Beijing, Sept 14–16, 2009

[3] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931

[4] Staehle R W. International Seminar on Materials Problems in Light Water Nuclear Power Plants: Status, Mitigation, Future Problems, Suzhou: Institute of Metal Research, CAS, Suzhou Nuclear Power Research Institute, the Second Research and Design Institute of Nuclear Industry, Feb 20–23, 2005

[5] Warzee M, Hennaut J, Maurice M, Sonnen C, Waty J, Berge P. J Electrochem Soc, 1964; 112: 670

[6] Ostwald C, Grabke H J. Corros Sci, 2004; 46: 1113

[7] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion, 2008; 64: 824

[8] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion 2007, Nashville, Tennessee, March 11—15, Paper No.07611

[9] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 2040

[10] Ding X S. Nucl Power Eng Technol, 2000; 13(4): 37

(丁训慎. 核电工程与技术, 2000; 13(4): 37)

[11] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509

[12] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[13] Ziemniak S E, Hanson M. Corros Sci, 2002; 44: 2209

[14] Nakagawa T, Totsuka N, Terachi T, Nakajima N. J Nucl Sci Technol, 2003; 40: 39

[15] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[16] Hermas A A. Corros Sci, 2008; 50: 2498

[17] Stefanov P, Stoychev D, Stoycheva M, Marinova T. Mater Chem Phys, 2000; 65: 212

[18] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[19] McIntype N S, Rummery T E, Cook M G, Owen D. J Electrochem Soc, 1976; 123: 1164

[20] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[21] McIntype N S, Zetaruk D G, Owen D. J Electrochem Soc, 1979; 126: 750

[22] Carette F, Lafont M C, Chatainier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[23] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P. Surf Interface Anal, 2002; 34: 197

[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309

[25] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[26] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, submitted

[27] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162

(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)

[28] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[29] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[30] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted

[31] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465

[32] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 831

(张志明, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 831)
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[10] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[13] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[14] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[15] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.