Please wait a minute...
金属学报  1990, Vol. 26 Issue (3): 55-60    
  论文 本期目录 | 过刊浏览 |
Al双晶体的晶界疲劳效应
李庆生;T.BRETHEAU
太原工业大学数学力学系;太原030024;UniversityParisNord
EFFECT OF GRAIN BOUNDARY ON FATIGUE BEHAVIOUR OF Al BICRYSTALS
LI Qingsheng (Chingshen Li);T. BRETHEAU Taiyuan University of Technology University Paris Nord Department of Mathematics and Mechanics;Taiyuan University of Technology; Taiyuan 030024
引用本文:

李庆生;T.BRETHEAU. Al双晶体的晶界疲劳效应[J]. 金属学报, 1990, 26(3): 55-60.
, . EFFECT OF GRAIN BOUNDARY ON FATIGUE BEHAVIOUR OF Al BICRYSTALS[J]. Acta Metall Sin, 1990, 26(3): 55-60.

全文: PDF(1293 KB)  
摘要: 通过Al双晶体疲劳试验,研究了晶界对循环变形和疲劳裂纹扩展的影响。实验结果表明,晶界疲劳效应集中体现于晶界影响区,表现为不相容塑性应变在该区内产生内应力,并由此可激发次级滑移,甚至产生晶界裂纹;在常幅循环应力下,随超Ⅰ阶段裂纹逐渐接近晶界,裂纹分叉、前沿碎裂,扩展速率降低,直至在晶界影响区中央达到一最小值。本文提出了晶界诱发裂纹顶端屏蔽机制,并以此解释了上述超Ⅰ阶段裂纹对微观组织敏感的扩展行为。
关键词 相容性Ⅰ阶段生长裂纹顶端屏蔽裂纹顶端位移    
Abstract:The effect of grain boundaries on cyclic deformation and fatiguecrack growth in Al bicrystals under stress controlling in laboratory atmospherehas been studied. The effect of a grain boundary is found to be restricted in anarrow area, termed as grain boundary affecting zone (GBAZ), where the incom-patible plastic strain by the two sides of the interface under cyclic loads creats in-ternal stress which conversely promotes inhomogeneous slip in the area and grainboundary cracking. As an extended stage I crack initiated from a notch approachesthe grain boundary under a constant cyclic load, the crack branches, the crackfront splits into several pieces, meanwhile, the growth rate reduces to a minimumvalue at the centre of GBAZ. Such microstructure-sensitive growth of extendedstage I cracks is mainly attributed to the grain boundary-induced crack tip shielding.
Key wordscompatibity    growth stage I    crack tip shielding    crack tip displacement
收稿日期: 1990-03-18     
1 Clark R, Chalmers B. Acta Metall, 1954; 2: 80
2 Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 75
3 Chuang Y D, Margolin H. Metall Trans, 1973; 4A: 1905
4 Jayaram V. Acta Metall, 1982; 33: 1307
S Rey C, Zaoui A. Acta Metall, 1980; 28: 687
6 Nageswarao M, Gerold V. Metall Trans, 1976; 7A: 1847
7 Li C, Bretheau T. Proc 7th Int Conf on Fracture. Huston, 1989
8 Chan K S. Acta Metall, 1987; 35: 981
9 Suresh S, Ritchie R O. Metall Trans, 1982; 13A: 1627
10 Pande C S, Masumura R A, Chou Y T. Acta Metall, 1988; 36: 49
11 Weertman J, Hack J E. Int J Fract, 1988; 34: 27
12 Li C. Fatigue Fract Eng Mater Struct, 1989; 12: 59
[1] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[2] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[3] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[5] 王鲁宁, 孟瑶, 刘丽君, 董超芳, 岩雨. 可降解锌基生物材料的研究进展[J]. 金属学报, 2017, 53(10): 1317-1322.
[6] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[7] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[8] 梁春永, 郝静祖, 王洪水, 李宝娥, 夏丹. 金属植介入器件接触诱导表面的制备技术与研究进展[J]. 金属学报, 2017, 53(10): 1265-1283.
[9] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[10] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[11] 赵颖, 曾利兰, 梁涛. 可降解镁基金属的生物相容性研究进展[J]. 金属学报, 2017, 53(10): 1181-1196.
[12] 张静莹 齐民 杨大颐 艾红军. ZnHA/TiO2复合涂层的制备及生物相容性[J]. 金属学报, 2011, 47(4): 429-434.
[13] 徐文利 陆喜 谭丽丽 杨柯. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47(10): 1342-1347.
[14] 贾维平;李守新;王中光;李小武;李广义. 非同轴取向Cu三晶体及双晶体的循环形变行为比较[J]. 金属学报, 1998, 34(7): 696-704.
[15] 孙守金;张名大. 镀Cu-Ni的碳纤维及其复合材料[J]. 金属学报, 1990, 26(6): 132-136.