|
|
仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能 |
周小卫( ), 郭云, 荆雪艳, 王宇鑫 |
江苏科技大学 材料科学与工程学院 镇江 212003 |
|
Biologically Inspired Xanthium-Like Spherical Texture in Superhydrophobic Ni-Co-Zn Coatings and Their Anti-Icing Performances |
ZHOU Xiaowei( ), Guo Yun, JING Xueyan, WANG Yuxin |
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
引用本文:
周小卫, 郭云, 荆雪艳, 王宇鑫. 仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能[J]. 金属学报, 2025, 61(5): 783-796.
Xiaowei ZHOU,
Yun Guo,
Xueyan JING,
Yuxin WANG.
Biologically Inspired Xanthium-Like Spherical Texture in Superhydrophobic Ni-Co-Zn Coatings and Their Anti-Icing Performances[J]. Acta Metall Sin, 2025, 61(5): 783-796.
1 |
Wang Y X, Guan L L, He Z, et al. Preparation and characterisation of AAO/Ni/Ni superhydrophobic coatings on aluminium alloys [J]. Surf. Eng., 2021, 37: 1246
|
2 |
Lian F, Zang L P, Xiang Q K, et al. Tribological performance of super hydrophobic titanium alloy surface in artificial seawater [J]. Acta Metall. Sin., 2016, 52: 592
|
2 |
连 峰, 臧路苹, 项秋宽 等. 超疏水钛合金表面在人工海水中的摩擦性能 [J]. 金属学报, 2016, 52: 592
|
3 |
Kang Z X, Guo M J. Fabrication of superhydrophobic Ti surface by thermal oxidation and its anticorrosion property [J]. Acta Metall. Sin., 2013, 49: 629
doi: 10.3724/SP.J.1037.2013.00027
|
3 |
康志新, 郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性 [J]. 金属学报, 2013, 49: 629
doi: 10.3724/SP.J.1037.2013.00027
|
4 |
Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure [J]. J. Phys. Chem., 1996, 100: 19512
|
5 |
Zhou X, Yu S R, Zang J, et al. Colorful nanostructured TiO2 film with superhydrophobic-superhydrophilic switchable wettability and anti-fouling property [J]. J. Alloys Compd., 2019, 798: 257
|
6 |
Jiang L, Wang R, Yang B, et al. Binary cooperative complementary nanoscale interfacial materials [J]. Pure Appl. Chem., 2000, 72: 73
|
7 |
Xi W J, Qiao Z M, Zhu C L, et al. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating [J]. Appl. Surf. Sci., 2009, 255: 4836
|
8 |
Wang G W, Song D, Qiao Y X, et al. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing [J]. J. Magnes. Alloy., 2023, 11: 1422
|
9 |
Shang W, Wu F, Jiang S Q, et al. Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys [J]. J. Mol. Liq., 2021, 330: 115606
|
10 |
Hashjin R R, Ranjbar Z, Yari H, et al. Tuning up sol-gel process to achieve highly durable superhydrophobic coating [J]. Surf. Interfaces, 2022, 33: 102282
|
11 |
Liu Q W, Liu G D, Li Z H, et al. Preparation and properties of superhydrophobic surface of magnesium alloy by nanosecond laser [J]. Laser Optoelectron. Prog., 2022, 59: 224
|
11 |
刘祁文, 刘国东, 李子航 等. 纳秒激光制备镁合金超疏水表面及其性能研究 [J]. 激光与光电子学进展, 2022, 59: 224
|
12 |
Liu Y H, Wang Z K. Superhydrophobic porous networks for enhanced droplet shedding [J]. Sci. Rep., 2016, 6: 33817
doi: 10.1038/srep33817
pmid: 27644452
|
13 |
She Z X, Li Q, Wang Z W, et al. Highly anticorrosion, self-cleaning superhydrophobic Ni-Co surface fabricated on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2014, 251: 7
|
14 |
Peng Y J, Li P C, Li H, et al. Theoretical and experimental study of spontaneous adsorption-induced superhydrophobic Cu coating with hierarchical structures and its anti-scaling property [J]. Surf. Coat. Technol., 2022, 441: 128557
|
15 |
Wang L, Teng C, Liu J, et al. Robust anti-icing performance of silicon wafer with hollow micro-/nano-structured ZnO [J]. J. Ind. Eng. Chem., 2018, 62: 46
|
16 |
Xue C R, Dong L H, Liu T, et al. Preparation and anticorrosion performance of superhydrophobic TiO2 nanotube arrays on pure Ti [J]. Corros. Sci. Prot. Technol., 2012, 24: 37
|
16 |
薛超瑞, 董丽华, 刘 通 等. TiO2纳米阵列超疏水膜的制备及耐腐蚀性能 [J]. 腐蚀科学与防护技术, 2012, 24: 37
|
17 |
Sökmen M, Tatlıdil İ, Breen C, et al. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties [J]. J. Hazard. Mater., 2011, 187: 199
|
18 |
Zheng J X, Liu R, Liu D D, et al. Slippery liquid infused porous surfaces with anti-icing performance fabricated by direct laser interference lithography [J]. Prog. Org. Coat., 2023, 175: 107308
|
19 |
Tian Y, Xu Y C, Zhu Z T, et al. Hierarchical micro/nano/porous structure PVDF/hydrophobic GO photothermal membrane with highly efficient anti-icing/de-icing performance [J]. Colloids Surf., 2022, 651A: 129586
|
20 |
Guo P, Zheng Y M, Wen M X, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces [J]. Adv. Mater., 2012, 24: 2642
|
21 |
Bhat R S, Shet V B. Development and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co coatings [J]. Surf. Eng., 2020, 36: 429
doi: 10.1080/02670844.2019.1680037
|
22 |
Kapusta-Kołodziej J, Syrek K, Pawlik A, et al. Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties [J]. Appl. Surf. Sci., 2017, 396: 1119
|
23 |
Zhou X W, Lu Z, Jing X Y. Pinning growth of TiN films toward porous Ti matrix [J]. J. Mater. Sci, 2022, 57: 18949
|
24 |
Zhou X W, Wu F J, Ouyang C. Electroless Ni-P alloys on nanoporous ATO surface of Ti substrate [J]. J. Mater. Sci, 2018, 53: 2812
|
25 |
Abou-Krisha M M, Rageh H M, Matter E A. Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media [J]. Surf. Coat. Technol., 2008, 202: 3739
|
26 |
Kazimierczak H, Ozga P, Socha R P. Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions [J]. Electrochim. Acta, 2013, 104: 378
|
27 |
Eliaz N, Venkatakrishna K, Hegde A C. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys [J]. Surf. Coat. Technol., 2010, 205: 1969
|
28 |
Dikici T, Culha O, Toparli M. Study of the mechanical and structural properties of Zn-Ni-Co ternary alloy electroplating [J]. J. Coat. Technol. Res., 2010, 7: 787
|
29 |
Abou-Krisha M M. Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings [J]. Mater. Chem. Phys., 2011, 125: 621
|
30 |
Jiang J W, Shen Y Z, Wang Z, et al. Anti/de-icing performance of the one-step electrodeposited superhydrophobic surfaces: Role of surface polarity regulated by hydrocarbon radical length [J]. Chem. Eng. J., 2022, 431: 133276
|
31 |
Yan Y X, Wang J H, Gao J, et al. TiO2-based slippery liquid-infused porous surfaces with excellent ice-phobic performance [J]. Colloids Surf., 2022, 654A: 129994
|
32 |
Shen Y Z, Wu Y, Tao J, et al. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion [J]. ACS Appl. Mater. Interfaces, 2019, 11: 3590
|
33 |
Khorasani M T, Mirzadeh H, Kermani Z. Wettability of porous polydimethylsiloxane surface: Morphology study [J]. Appl. Surf. Sci., 2005, 242: 339
|
34 |
Fu Q T, Wu X H, Kumar D, et al. Development of sol-gel icephobic coatings: Effect of surface roughness and surface energy [J]. ACS Appl. Mater. Interfaces, 2014, 6: 20685
|
35 |
Wei F F, Xiang T F, Liu J, et al. Fabrication of superhydrophobic surface by combination of electrodeposition and hydrothermal synthesis and its self-cleaning and anti-icing properties [J]. Electroplat. Finish., 2022, 41: 502
|
35 |
魏菲菲, 项腾飞, 刘 剑 等. 电沉积-水热法构建超疏水表面及其自清洁和防结冰性能 [J]. 电镀与涂饰, 2022, 41: 502
|
36 |
Huang Y, Sarkar D K, Chen X G. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process [J]. Appl. Surf. Sci., 2015, 327: 327
|
37 |
Zhou X W, Guo Y, Lu Z. 3D Xanthium-like of Ni-Co-Zn ternary alloys as superhydrophobic coatings toward porous Ti surface for its anti-icing performances [J]. Surf. Coat. Technol., 2023, 473: 130034
|
38 |
Wang Z H, Li Y C, Zhang G J. Fabrication of superhydrophobic Zn-Ni coatings on LA43M magnesium alloy [J]. J. Mater. Eng. Perform., 2022, 31: 5333
|
39 |
Huang L J, Huang H, Guo W, et al. 3D urchin-like of Zn-Ni-Co ternary oxide microspheres as high-performance electrodes for supercapacitors [J]. Electrochim. Acta, 2022, 434: 141317
|
40 |
Wu C, Cai J J, Zhang Q B, et al. Hierarchical mesoporous zinc-nickel-cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors [J]. ACS Appl. Mater. Interfaces, 2015, 7: 26512
|
41 |
Zhu D Y, Dai P Q, Luo X B, et al. Novel characterization of wetting properties and the calculation of liquid-solid interface tension (I) [J]. Sci. Technol. Eng., 2007, 7: 3057
|
41 |
朱定一, 戴品强, 罗晓斌 等. 润湿性表征体系及液固界面张力计算的新方法(Ⅰ) [J]. 科学技术与工程, 2007, 7: 3057
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|