Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 783-796    DOI: 10.11900/0412.1961.2023.00066
  研究论文 本期目录 | 过刊浏览 |
仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能
周小卫(), 郭云, 荆雪艳, 王宇鑫
江苏科技大学 材料科学与工程学院 镇江 212003
Biologically Inspired Xanthium-Like Spherical Texture in Superhydrophobic Ni-Co-Zn Coatings and Their Anti-Icing Performances
ZHOU Xiaowei(), Guo Yun, JING Xueyan, WANG Yuxin
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

周小卫, 郭云, 荆雪艳, 王宇鑫. 仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能[J]. 金属学报, 2025, 61(5): 783-796.
Xiaowei ZHOU, Yun Guo, Xueyan JING, Yuxin WANG. Biologically Inspired Xanthium-Like Spherical Texture in Superhydrophobic Ni-Co-Zn Coatings and Their Anti-Icing Performances[J]. Acta Metall Sin, 2025, 61(5): 783-796.

全文: PDF(4691 KB)   HTML
摘要: 

抗覆冰超疏水涂层被广泛应用于航天器羽翼和风电叶扇等领域。受传统工艺的复杂性及氟碳聚合物疏水涂料耐候性差及与基体结合力差等因素影响,严重制约了超疏水涂层的工业化应用。本工作提出在蜂窝多孔Ti上电沉积纳米晶Ni0.12Co0.88 - x Zn x (x = 0~0.36,%,质量分数)合金涂层,经200 ℃时效处理,无需进行二次含F低表面能涂层修饰即可得到超疏水表面。通过SEM、XRD和润湿性实验对其微观形貌及其超疏水性能进行表征。结果表明,在Zn2+浓度50 g/L (x = 0.24)和络合剂(柠檬酸钠(Na3Cit))添加量5 g/L等优化工艺下,涂层晶粒尺寸约为300 nm,且沿多孔Ti的孔道钉扎生长,显著提高了涂层与多孔Ti基体的界面结合能力。润湿性测试结果表明:多孔Ti基体和涂层均为亲水性,但经自然时效14 d后涂层表现出疏水特性,其水滴接触角最大为126.3°,滚动角最低为17.5°。研究了人工时效温度、时间与润湿性之间的关联性,结果表明,经200 ℃人工时效处理后,涂层的超疏水性最佳,水滴接触角高达153.2°且滚动角低于7.8°,这主要归因于该涂层所表现出的自组装行为属于热响应机制,人工时效加速了这一自组装演变进程,大量的ZnO枝晶在纳米晶Ni或Co球壳上择优生长,生成多触角ZnO枝晶的球冠织构,从而具备超疏水结构特征。在-10 ℃冷冻台上进行抗覆冰特性测试,结果表明,经200 ℃人工时效后的涂层试样,其表面水滴完全结冰所需时间最长,为1418 s,比多孔Ti基体的抑冰时间延长近20倍,表现出优异的抗覆冰性能。

关键词 超疏水Ni-Co-Zn涂层仿生苍耳织构抗覆冰特性    
Abstract

Superhydrophobic surfaces are promising anti-icing solutions for industrial applications such as spacecraft wings and wind turbine fans. However, the complexity of traditional processes, poor durability, and low interfacial adhesion between the substrate and fluorocarbon polymer films restrict their widespread use. This study validates a one-step electroplating method for Ni0.12Co0.88 - x Znx (x = 0-0.36, %, mass fraction) coatings on honeycomb porous Ti surfaces, achieving super hydrophobicity without secondary modifications. SEM, XRD, and wettability tests are employed to characterize the surface features and hydrophobic properties. Optimized conditions (50 g/L Zn2+ (x = 0.24) and 5 g/L Na3Cit concentration) resulted in a compact microstructural texture and refined crystal size (300 nm), enhancing the interfacial bonding strength. The as-deposited coating exhibited hydrophobic features, with a maximum water contact angle (WCA) of 126.3° and a sliding angle (SA) of 17.5° after 14 d of natural aging. The textural evolution from Zn nanocrystals to ZnO dendrites with a multi-antenna structure was attributed to this phenomenon. Artificial aging at 100, 200, and 300 oC achieved a superhydrophobic surface in less than 7 d. The sample aged at 200 oC displayed a WCA exceeding 153.2° and an SA below 7.8° due to out-migration of the active ZnO phase and self-assembly evolution, forming xanthium-like spherical structures with nanocrystalline Ni or Co shells and multi-tentacle ZnO dendrites. Comparatively, anti-icing performances were assessed at -10 oC, showing a peach blossom ice shape on all coating samples. The sample aged at 200 oC exhibited an ice-resistant time of over 1418 s, 20 times longer than that of the porous Ti substrate, indicating excellent anti-icing performances. In summary, electroplating Ni-Co-Zn coatings onto porous Ti is a practical solution that meets the evolving requirements for superhydrophobic films in spacecraft shells for anti-icing and warship surfaces for anti-salt spray corrosion.

Key wordssuperhydrophobic    Ni-Co-Zn coating    xanthium-like texture    anti-icing performance
收稿日期: 2023-02-18     
ZTFLH:  TB332  
基金资助:国家自然科学基金项目(51605203);江苏省自然科学基金项目(BK20211344)
通讯作者: 周小卫,zhouxiaowei901@just.edu.cn,主要从事纳米晶镀层性能的研究
Corresponding author: ZHOU Xiaowei, associate professor, Tel: (0511)84401188, E-mail: zhouxiaowei901@just.edu.cn
作者简介: 周小卫,男,1983年生,副教授,博士
图1  不同直流电压下蜂窝多孔Ti表面的SEM像及其孔径分布
图2  Zn2+浓度为50 g/L时(x = 0.24)不同络合剂(柠檬酸钠(Na3Cit))添加量下Ni-Co-Zn镀液的循环伏安(CV)曲线
图3  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度下电沉积Ni-Co-Zn涂层表面形貌的SEM像
图4  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度下电沉积Ni-Co-Zn涂层织构的XRD谱
图5  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度下Ni-Co-Zn涂层附着力测试的OM像
Zn2+ concentration / (g·L-1)WCASA
085.162.2
25101.125.2
50126.317.5
100115.721.5
表1  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度条件下Ni-Co-Zn涂层试样经自然时效14 d后表面水滴接触角(WCA)和滚动角(SA)测试结果 (°)
图6  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度条件下经不同温度时效后Ni-Co-Zn涂层试样的WCA与暴露在空气中时间的关系

Zn2+ concentration

g·L-1

25 oC100 oC200 oC300 oC
2594.2132.5140.1114.7
50103.1142.3153.2131.8
10088.7134.2146.9107.8
表2  络合剂Na3Cit添加量为5 g/L时不同Zn2+浓度条件下Ni-Co-Zn涂层试样经不同时效处理后的WCA测量结果 (°)
图7  Zn2+和络合剂 Na3Cit浓度分别为50和5 g/L条件下Ni-Co-Zn涂层试样经不同温度时效后在干燥空气中暴露14 d后表面形貌的SEM像
图8  Ti基体、Zn2+和络合剂Na3Cit浓度分别为50和5 g/L条件下阳极氧化蜂窝多孔Ti和Ni-Co-Zn涂层经不同温度时效后的试样表面在-10 ℃下延迟结冰特性的OM像
图9  超疏水表面苍耳球冠结构的形成机理示意图
图10  Zn2+和络合剂 Na3Cit浓度分别为50和5 g/L条件下Ni-Co-Zn涂层经自然时效后的多触角乳突状和人工时效后的苍耳球冠织构SEM像
1 Wang Y X, Guan L L, He Z, et al. Preparation and characterisation of AAO/Ni/Ni superhydrophobic coatings on aluminium alloys [J]. Surf. Eng., 2021, 37: 1246
2 Lian F, Zang L P, Xiang Q K, et al. Tribological performance of super hydrophobic titanium alloy surface in artificial seawater [J]. Acta Metall. Sin., 2016, 52: 592
2 连 峰, 臧路苹, 项秋宽 等. 超疏水钛合金表面在人工海水中的摩擦性能 [J]. 金属学报, 2016, 52: 592
3 Kang Z X, Guo M J. Fabrication of superhydrophobic Ti surface by thermal oxidation and its anticorrosion property [J]. Acta Metall. Sin., 2013, 49: 629
doi: 10.3724/SP.J.1037.2013.00027
3 康志新, 郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性 [J]. 金属学报, 2013, 49: 629
doi: 10.3724/SP.J.1037.2013.00027
4 Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure [J]. J. Phys. Chem., 1996, 100: 19512
5 Zhou X, Yu S R, Zang J, et al. Colorful nanostructured TiO2 film with superhydrophobic-superhydrophilic switchable wettability and anti-fouling property [J]. J. Alloys Compd., 2019, 798: 257
6 Jiang L, Wang R, Yang B, et al. Binary cooperative complementary nanoscale interfacial materials [J]. Pure Appl. Chem., 2000, 72: 73
7 Xi W J, Qiao Z M, Zhu C L, et al. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating [J]. Appl. Surf. Sci., 2009, 255: 4836
8 Wang G W, Song D, Qiao Y X, et al. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing [J]. J. Magnes. Alloy., 2023, 11: 1422
9 Shang W, Wu F, Jiang S Q, et al. Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys [J]. J. Mol. Liq., 2021, 330: 115606
10 Hashjin R R, Ranjbar Z, Yari H, et al. Tuning up sol-gel process to achieve highly durable superhydrophobic coating [J]. Surf. Interfaces, 2022, 33: 102282
11 Liu Q W, Liu G D, Li Z H, et al. Preparation and properties of superhydrophobic surface of magnesium alloy by nanosecond laser [J]. Laser Optoelectron. Prog., 2022, 59: 224
11 刘祁文, 刘国东, 李子航 等. 纳秒激光制备镁合金超疏水表面及其性能研究 [J]. 激光与光电子学进展, 2022, 59: 224
12 Liu Y H, Wang Z K. Superhydrophobic porous networks for enhanced droplet shedding [J]. Sci. Rep., 2016, 6: 33817
doi: 10.1038/srep33817 pmid: 27644452
13 She Z X, Li Q, Wang Z W, et al. Highly anticorrosion, self-cleaning superhydrophobic Ni-Co surface fabricated on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2014, 251: 7
14 Peng Y J, Li P C, Li H, et al. Theoretical and experimental study of spontaneous adsorption-induced superhydrophobic Cu coating with hierarchical structures and its anti-scaling property [J]. Surf. Coat. Technol., 2022, 441: 128557
15 Wang L, Teng C, Liu J, et al. Robust anti-icing performance of silicon wafer with hollow micro-/nano-structured ZnO [J]. J. Ind. Eng. Chem., 2018, 62: 46
16 Xue C R, Dong L H, Liu T, et al. Preparation and anticorrosion performance of superhydrophobic TiO2 nanotube arrays on pure Ti [J]. Corros. Sci. Prot. Technol., 2012, 24: 37
16 薛超瑞, 董丽华, 刘 通 等. TiO2纳米阵列超疏水膜的制备及耐腐蚀性能 [J]. 腐蚀科学与防护技术, 2012, 24: 37
17 Sökmen M, Tatlıdil İ, Breen C, et al. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties [J]. J. Hazard. Mater., 2011, 187: 199
18 Zheng J X, Liu R, Liu D D, et al. Slippery liquid infused porous surfaces with anti-icing performance fabricated by direct laser interference lithography [J]. Prog. Org. Coat., 2023, 175: 107308
19 Tian Y, Xu Y C, Zhu Z T, et al. Hierarchical micro/nano/porous structure PVDF/hydrophobic GO photothermal membrane with highly efficient anti-icing/de-icing performance [J]. Colloids Surf., 2022, 651A: 129586
20 Guo P, Zheng Y M, Wen M X, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces [J]. Adv. Mater., 2012, 24: 2642
21 Bhat R S, Shet V B. Development and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co coatings [J]. Surf. Eng., 2020, 36: 429
doi: 10.1080/02670844.2019.1680037
22 Kapusta-Kołodziej J, Syrek K, Pawlik A, et al. Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties [J]. Appl. Surf. Sci., 2017, 396: 1119
23 Zhou X W, Lu Z, Jing X Y. Pinning growth of TiN films toward porous Ti matrix [J]. J. Mater. Sci, 2022, 57: 18949
24 Zhou X W, Wu F J, Ouyang C. Electroless Ni-P alloys on nanoporous ATO surface of Ti substrate [J]. J. Mater. Sci, 2018, 53: 2812
25 Abou-Krisha M M, Rageh H M, Matter E A. Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media [J]. Surf. Coat. Technol., 2008, 202: 3739
26 Kazimierczak H, Ozga P, Socha R P. Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions [J]. Electrochim. Acta, 2013, 104: 378
27 Eliaz N, Venkatakrishna K, Hegde A C. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys [J]. Surf. Coat. Technol., 2010, 205: 1969
28 Dikici T, Culha O, Toparli M. Study of the mechanical and structural properties of Zn-Ni-Co ternary alloy electroplating [J]. J. Coat. Technol. Res., 2010, 7: 787
29 Abou-Krisha M M. Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings [J]. Mater. Chem. Phys., 2011, 125: 621
30 Jiang J W, Shen Y Z, Wang Z, et al. Anti/de-icing performance of the one-step electrodeposited superhydrophobic surfaces: Role of surface polarity regulated by hydrocarbon radical length [J]. Chem. Eng. J., 2022, 431: 133276
31 Yan Y X, Wang J H, Gao J, et al. TiO2-based slippery liquid-infused porous surfaces with excellent ice-phobic performance [J]. Colloids Surf., 2022, 654A: 129994
32 Shen Y Z, Wu Y, Tao J, et al. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion [J]. ACS Appl. Mater. Interfaces, 2019, 11: 3590
33 Khorasani M T, Mirzadeh H, Kermani Z. Wettability of porous polydimethylsiloxane surface: Morphology study [J]. Appl. Surf. Sci., 2005, 242: 339
34 Fu Q T, Wu X H, Kumar D, et al. Development of sol-gel icephobic coatings: Effect of surface roughness and surface energy [J]. ACS Appl. Mater. Interfaces, 2014, 6: 20685
35 Wei F F, Xiang T F, Liu J, et al. Fabrication of superhydrophobic surface by combination of electrodeposition and hydrothermal synthesis and its self-cleaning and anti-icing properties [J]. Electroplat. Finish., 2022, 41: 502
35 魏菲菲, 项腾飞, 刘 剑 等. 电沉积-水热法构建超疏水表面及其自清洁和防结冰性能 [J]. 电镀与涂饰, 2022, 41: 502
36 Huang Y, Sarkar D K, Chen X G. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process [J]. Appl. Surf. Sci., 2015, 327: 327
37 Zhou X W, Guo Y, Lu Z. 3D Xanthium-like of Ni-Co-Zn ternary alloys as superhydrophobic coatings toward porous Ti surface for its anti-icing performances [J]. Surf. Coat. Technol., 2023, 473: 130034
38 Wang Z H, Li Y C, Zhang G J. Fabrication of superhydrophobic Zn-Ni coatings on LA43M magnesium alloy [J]. J. Mater. Eng. Perform., 2022, 31: 5333
39 Huang L J, Huang H, Guo W, et al. 3D urchin-like of Zn-Ni-Co ternary oxide microspheres as high-performance electrodes for supercapacitors [J]. Electrochim. Acta, 2022, 434: 141317
40 Wu C, Cai J J, Zhang Q B, et al. Hierarchical mesoporous zinc-nickel-cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors [J]. ACS Appl. Mater. Interfaces, 2015, 7: 26512
41 Zhu D Y, Dai P Q, Luo X B, et al. Novel characterization of wetting properties and the calculation of liquid-solid interface tension (I) [J]. Sci. Technol. Eng., 2007, 7: 3057
41 朱定一, 戴品强, 罗晓斌 等. 润湿性表征体系及液固界面张力计算的新方法(Ⅰ) [J]. 科学技术与工程, 2007, 7: 3057
[1] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[2] 连峰,臧路苹,项秋宽,张会臣. 超疏水钛合金表面在人工海水中的摩擦性能*[J]. 金属学报, 2016, 52(5): 592-598.
[3] 连峰, 任洪梅, 管善堃, 张会臣. 界面效应对小球藻在钛合金表面附着的影响[J]. 金属学报, 2014, 50(9): 1146-1152.
[4] 康志新,郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49(5): 629-634.
[5] 徐群杰 邓先钦 潘红涛 云虹. 具有超疏水表面的白铜在3.5%NaCl溶液中的电化学行为[J]. 金属学报, 2012, 48(1): 94-98.