|
|
Ti6246钛合金 β → α 相变中晶界 α 相生长行为及其对微织构的影响 |
齐敏1,2, 王倩2, 马英杰1,2( ), 曹贺萌1,2, 黄森森2, 雷家峰1,2, 杨锐1,2 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During β → α Phase Transformation in Ti6246 Titanium Alloys |
QI Min1,2, WANG Qian2, MA Yingjie1,2( ), CAO Hemeng1,2, HUANG Sensen2, LEI Jiafeng1,2, YANG Riu1,2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shichangxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
齐敏, 王倩, 马英杰, 曹贺萌, 黄森森, 雷家峰, 杨锐. Ti6246钛合金 β → α 相变中晶界 α 相生长行为及其对微织构的影响[J]. 金属学报, 2025, 61(2): 265-277.
Min QI,
Qian WANG,
Yingjie MA,
Hemeng CAO,
Sensen HUANG,
Jiafeng LEI,
Riu YANG.
Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During β → α Phase Transformation in Ti6246 Titanium Alloys[J]. Acta Metall Sin, 2025, 61(2): 265-277.
1 |
Kang L M, Yang C. A Review on high‐strength titanium alloys: Microstructure, strengthening, and properties [J]. Adv. Eng. Mater., 2019, 21: 1801359
|
2 |
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
2 |
李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
3 |
Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40: 25
|
3 |
樊江昆, 赖敏杰, 唐 斌 等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40: 25
doi: 10.11868/j.issn.1005-5053.2020.000065
|
4 |
Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
|
5 |
Li C, Zhang X Y, Li Z Y, et al. Hot deformation of Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloys containing thin and thick lamellar α phase [J]. Mater. Sci. Eng., 2013, A573: 75
|
6 |
Wang L, Fan X G, Zhan M, et al. The heterogeneous globularization related to crystal and geometrical orientation of two-phase titanium alloys with a colony microstructure [J]. Mater. Des., 2020, 186: 108338
|
7 |
Zhang Y, Xin R L, Guo B Q, et al. Influence of alternate grain boundary α on the development of Widmanstätten microstructure in TC21 Ti alloy [J]. Mater. Charact., 2021, 177: 111162
|
8 |
Wu C, Zhao Y Q, Huang S X, et al. Effect of cooling rate on α variant selection and microstructure evolution in a near β Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy [J]. J. Alloys Compd., 2020, 841: 155728
|
9 |
Vanderesse N, Maire E, Darrieulat M, et al. Three-dimensional microtomographic study of Widmanstätten microstructures in an alpha/beta titanium alloy [J]. Scr. Mater., 2008, 58: 512
|
10 |
Zhao Z B, Wang Q J, Wang H, et al. Determining the orientation of parent β grain from one α variant in titanium alloys [J]. J. Appl. Crystallogr., 2018, 51: 1125
|
11 |
Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
|
12 |
Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during β→α phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
|
13 |
Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
|
14 |
Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
|
15 |
Sun Z C, Guo S S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α + β phase field [J]. Acta Mater., 2013, 61: 2057
|
16 |
Gao X, Zhang S F, Wang L, et al. Evolution of grain boundary α phase during cooling from β phase field in a α + β titanium alloy [J]. Mater. Lett., 2021, 301: 130318
|
17 |
Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy [J]. Acta Mater., 2007, 55: 6765
|
18 |
Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
|
19 |
Pilchak A L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys [J]. Scr. Mater., 2014, 74: 68
|
20 |
Sinha V, Spowart J E, Mills M J, et al. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects [J]. Metall. Mater. Trans., 2006, 37A: 1507
|
21 |
Sun Z C, Li X S, Wu H L, et al. A unified growth model of the secondary grain boundary α phase in TA15 Ti-alloy [J]. J. Alloys Compd., 2016, 689: 693
|
22 |
Zheng H J, Fan X G, Zeng X, et al. Crystal orientation and morphology of α lamellae in wrought titanium alloys: On the role of microstructure evolution in β processing [J]. Chin. J. Aeronaut., 2019, 32: 1305
|
23 |
Liu T, Germain L, Teixeira J, et al. Hierarchical criteria to promote fast and selective αGB precipitation at β grain boundaries in β- metastable Ti-alloys [J]. Acta Mater., 2017, 141: 97
|
24 |
Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
|
25 |
Appolaire B, Héricher L, Aeby-Gautier E. Modelling of phase transformation kinetics in Ti alloys—Isothermal treatments [J]. Acta Mater., 2005, 53: 3001
|
26 |
Li T, Ahmed M, Sha G, et al. The influence of partitioning on the growth of intragranular α in near-β Ti alloys [J]. J. Alloys Compd., 2015, 643: 212
|
27 |
Spanos G, Masumura R A, Vandermeer R A, et al. The evolution and growth kinetics of precipitate plates growing by the ledge mechanism [J]. Acta Metall. Mater., 1994, 42: 4165
|
28 |
Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
|
29 |
Sharma H, van Bohemen S M C, Petrov R H, et al. Three-dimensional analysis of microstructures in titanium [J]. Acta Mater., 2010, 58: 2399
|
30 |
Pang G D, Lin Y C, Jiang Y Q, et al. Precipitation behaviors and orientation evolution mechanisms of α phases in Ti-55511 titanium alloy during heat treatment and subsequent hot deformation [J]. Mater. Charact., 2020, 167: 110471
|
31 |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
|
32 |
Qi M, Ma Y J, Yang J, et al. Microtexture evolution effected by Mo content in α + β titanium alloys [J]. Mater. Charact., 2022, 188: 111884
|
33 |
Joseph S, Bantounas I, Lindley T C, et al. Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si [J]. Int. J. Plast., 2018, 100: 90
|
34 |
Wang T, Guo H Z, Tan L J, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys [J]. Mater. Sci. Eng., 2011, A528: 6375
|
35 |
Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
|
36 |
Gil F X, Rodríguez D, Planell J A. Grain growth kinetics of pure titanium [J]. Scr. Metall. Mater., 1995, 33: 1361
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|