Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 265-277    DOI: 10.11900/0412.1961.2023.00002
  研究论文 本期目录 | 过刊浏览 |
Ti6246钛合金 βα 相变中晶界 α 相生长行为及其对微织构的影响
齐敏1,2, 王倩2, 马英杰1,2(), 曹贺萌1,2, 黄森森2, 雷家峰1,2, 杨锐1,2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During βα Phase Transformation in Ti6246 Titanium Alloys
QI Min1,2, WANG Qian2, MA Yingjie1,2(), CAO Hemeng1,2, HUANG Sensen2, LEI Jiafeng1,2, YANG Riu1,2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shichangxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

齐敏, 王倩, 马英杰, 曹贺萌, 黄森森, 雷家峰, 杨锐. Ti6246钛合金 βα 相变中晶界 α 相生长行为及其对微织构的影响[J]. 金属学报, 2025, 61(2): 265-277.
Min QI, Qian WANG, Yingjie MA, Hemeng CAO, Sensen HUANG, Jiafeng LEI, Riu YANG. Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During βα Phase Transformation in Ti6246 Titanium Alloys[J]. Acta Metall Sin, 2025, 61(2): 265-277.

全文: PDF(3917 KB)   HTML
摘要: 

钛合金的初始α片层组织特征对其热机械加工过程中的显微组织演化及力学性能具有重要影响,掌握初始α片层组织演化规律是实现钛合金微观组织和力学性能精准调控的前提条件。本工作通过中断炉冷热处理方法研究了Ti6246钛合金βα相转变过程中初始α片层组织的演变规律,分析了晶界α相(αGB)的生长行为及其对后续晶内α片层生长、微织构强度的影响。结果表明,钛合金由β单相区缓冷至α + β两相区的过程中,与两侧β晶粒都符合Burgers取向关系(BOR)的αGB (2-BOR αGB)优先在β晶界处形核。而后,与2-BOR αGB取向相近的晶内α片层在αGB处形核并向两侧β晶粒内生长,2-BOR αGB与两侧α片层在晶界处形成较强的微织构。在α相生长早期,两侧β晶粒与2-BOR αGB的BOR偏差越小,较强的微织构形成越早。除2-BOR αGB优先发生βα相转变外,与单侧β晶粒符合BOR的αGB (1-BOR αGB)也形核生长,但是,与1-BOR αGB取向相近的晶内α片层仅在符合BOR的单侧β晶粒内形成,而在另一侧β晶粒中则形成取向不同的晶内α片层,在晶界处形成较弱的微织构。

关键词 α + β钛合金相变择优生长晶界α微织构    
Abstract

The initial lamellar microstructure of titanium alloys significantly affects their microstructural evolution and mechanical property during thermo-mechanical treatments. Thus, the evolution of the initial lamellar microstructure must be explored to control the microstructure and enhance the mechanical property. The present work focuses on the evolution of the lamellar microstructure during βα phase transformation via interrupted furnace cooling experiments to analyze the growth behavior of the grain boundary α phase (αGB) and its effect on the subsequent growth of intragranular α lamellae and microtexture. Results show that when titanium alloy furnace cools from the β phase field to the α + β phase field, the αGB holding Burgers orientation relationship (BOR) with both sides of β grains (2-BOR αGB) has an advantage for early transformation at the β grain boundary. In particular, type II (49.5°/<110>) and type III (60°/<110>) β grain boundaries are preferential sites for the early nucleation of αGB particles. As the temperature decreases, α lamellae holding similar orientation to 2-BOR αGB grow to both sides of β grains. Thus, 2-BOR αGB and both sides of α lamellae form a strong microtexture at the grain boundary. At the early growth period of the α phase, the smaller the θ2-BOR (misorientation of the close-oriented αGB variant pair of parents β1 and β2) of 2-BOR αGB, the earlier the formation of a strong microtexture at the grain boundary. 2-BOR αGB preferentially precipitates, whereas the αGB holding BOR with only one side of the β grain (1-BOR αGB) nucleates. α lamellae holding a similar orientation to 1-BOR αGB grow to one side of the BOR-β grain (holding BOR with αGB), whereas α lamellae with a different orientation grow in the non-BOR-β grain. Thus, 1-BOR αGB and one side of α lamellae form a weak microtexture at the grain boundary.

Key wordsα + β titanium alloy    phase transformation    preferred growth    grain boundary α phase    microtexture
收稿日期: 2023-01-03     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2021YFC2801801);国家自然科学基金项目(51871225)
通讯作者: 马英杰,yjma@imr.ac.cn,主要从事结构钛合金研究
Corresponding author: MA Yingjie, professor, Tel: 13840026329, E-mail: yjma@imr.ac.cn
作者简介: 齐 敏,女,1995年生,博士生
图1  β退火热处理和中断炉冷热处理制度示意图
图2  Ti6246合金原始微观组织的SEM像
图3  β退火处理后Ti6246合金片层组织的OM像
图4  β退火处理后Ti6246合金片层组织的EBSD分析
图5  Ti6246合金由β单相区炉冷至两相区不同温度后α相组织形貌的OM像
图6  Ti6246合金由β单相区炉冷至两相区不同温度后α相组织形貌的SEM像
图7  Ti6246合金在α + β→β相变温度(Tβ )以下不同温度冷却后的晶界α相(αGB)及α集束体积分数变化
图8  Ti6246合金由β单相区炉冷至两相区不同温度后α相的EBSD分析
Temperature / oCHAGBLAGB (< 10o)
9203.320.016.711.748.30
8805.013.301.708.371.70
8403.308.301.708.376.71.7
表1  Ti6246合金由β单相区炉冷至两相区不同温度后转变为αGB的β相晶界类型分布 (%)
图9  Ti6246合金由β单相区炉冷至880 ℃后多个位置α相晶粒的EBSD分析
图10  Ti6246合金由β单相区炉冷至880 ℃后αGB的EBSD分析
图11  Ti6246合金由β单相区炉冷至880 ℃后2-BOR αGB的EBSD分析
图12  Ti6246合金由β单相区炉冷至880 ℃后2-BOR αGB向两侧形成α集束的概率随θ2-BOR的变化
图13  钛合金由β单相区冷却过程中微织构形成过程示意图
1 Kang L M, Yang C. A Review on high‐strength titanium alloys: Microstructure, strengthening, and properties [J]. Adv. Eng. Mater., 2019, 21: 1801359
2 Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
2 李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
3 Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40: 25
3 樊江昆, 赖敏杰, 唐 斌 等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40: 25
doi: 10.11868/j.issn.1005-5053.2020.000065
4 Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
5 Li C, Zhang X Y, Li Z Y, et al. Hot deformation of Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloys containing thin and thick lamellar α phase [J]. Mater. Sci. Eng., 2013, A573: 75
6 Wang L, Fan X G, Zhan M, et al. The heterogeneous globularization related to crystal and geometrical orientation of two-phase titanium alloys with a colony microstructure [J]. Mater. Des., 2020, 186: 108338
7 Zhang Y, Xin R L, Guo B Q, et al. Influence of alternate grain boundary α on the development of Widmanstätten microstructure in TC21 Ti alloy [J]. Mater. Charact., 2021, 177: 111162
8 Wu C, Zhao Y Q, Huang S X, et al. Effect of cooling rate on α variant selection and microstructure evolution in a near β Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy [J]. J. Alloys Compd., 2020, 841: 155728
9 Vanderesse N, Maire E, Darrieulat M, et al. Three-dimensional microtomographic study of Widmanstätten microstructures in an alpha/beta titanium alloy [J]. Scr. Mater., 2008, 58: 512
10 Zhao Z B, Wang Q J, Wang H, et al. Determining the orientation of parent β grain from one α variant in titanium alloys [J]. J. Appl. Crystallogr., 2018, 51: 1125
11 Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
12 Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
13 Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
14 Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
15 Sun Z C, Guo S S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α + β phase field [J]. Acta Mater., 2013, 61: 2057
16 Gao X, Zhang S F, Wang L, et al. Evolution of grain boundary α phase during cooling from β phase field in a α + β titanium alloy [J]. Mater. Lett., 2021, 301: 130318
17 Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy [J]. Acta Mater., 2007, 55: 6765
18 Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
19 Pilchak A L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys [J]. Scr. Mater., 2014, 74: 68
20 Sinha V, Spowart J E, Mills M J, et al. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects [J]. Metall. Mater. Trans., 2006, 37A: 1507
21 Sun Z C, Li X S, Wu H L, et al. A unified growth model of the secondary grain boundary α phase in TA15 Ti-alloy [J]. J. Alloys Compd., 2016, 689: 693
22 Zheng H J, Fan X G, Zeng X, et al. Crystal orientation and morphology of α lamellae in wrought titanium alloys: On the role of microstructure evolution in β processing [J]. Chin. J. Aeronaut., 2019, 32: 1305
23 Liu T, Germain L, Teixeira J, et al. Hierarchical criteria to promote fast and selective αGB precipitation at β grain boundaries in β- metastable Ti-alloys [J]. Acta Mater., 2017, 141: 97
24 Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
25 Appolaire B, Héricher L, Aeby-Gautier E. Modelling of phase transformation kinetics in Ti alloys—Isothermal treatments [J]. Acta Mater., 2005, 53: 3001
26 Li T, Ahmed M, Sha G, et al. The influence of partitioning on the growth of intragranular α in near-β Ti alloys [J]. J. Alloys Compd., 2015, 643: 212
27 Spanos G, Masumura R A, Vandermeer R A, et al. The evolution and growth kinetics of precipitate plates growing by the ledge mechanism [J]. Acta Metall. Mater., 1994, 42: 4165
28 Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
29 Sharma H, van Bohemen S M C, Petrov R H, et al. Three-dimensional analysis of microstructures in titanium [J]. Acta Mater., 2010, 58: 2399
30 Pang G D, Lin Y C, Jiang Y Q, et al. Precipitation behaviors and orientation evolution mechanisms of α phases in Ti-55511 titanium alloy during heat treatment and subsequent hot deformation [J]. Mater. Charact., 2020, 167: 110471
31 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
32 Qi M, Ma Y J, Yang J, et al. Microtexture evolution effected by Mo content in α + β titanium alloys [J]. Mater. Charact., 2022, 188: 111884
33 Joseph S, Bantounas I, Lindley T C, et al. Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si [J]. Int. J. Plast., 2018, 100: 90
34 Wang T, Guo H Z, Tan L J, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys [J]. Mater. Sci. Eng., 2011, A528: 6375
35 Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
36 Gil F X, Rodríguez D, Planell J A. Grain growth kinetics of pure titanium [J]. Scr. Metall. Mater., 1995, 33: 1361
[1] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[2] 唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87.
[3] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[4] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[5] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[6] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[7] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[8] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[9] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[10] 张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
[11] 杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
[12] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[13] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[14] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[15] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.