Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1229-1238    DOI: 10.11900/0412.1961.2022.00359
  研究论文 本期目录 | 过刊浏览 |
Ce75Cr1钢洁净度、组织与耐点蚀性能的影响
孟泽1, 李光强1,2, 李腾飞3, 郑庆4, 曾斌4, 刘昱1()
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2.武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
3.武汉科技大学 钢铁冶金新工艺湖北省重点实验室 武汉 430081
4.涟源钢铁有限公司 娄底 417009
Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel
MENG Ze1, LI Guangqiang1,2, LI Tengfei3, ZHENG Qing4, ZENG Bin4, LIU Yu1()
1.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
3.Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, China
4.Lianyuan Iron and Steel Co. Ltd., Loudi 417009, China
引用本文:

孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
Ze MENG, Guangqiang LI, Tengfei LI, Qing ZHENG, Bin ZENG, Yu LIU. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. Acta Metall Sin, 2024, 60(9): 1229-1238.

全文: PDF(3269 KB)   HTML
摘要: 

通过对不同Ce含量的75Cr1钢中夹杂物的特征分析,以及对显微组织演变的原位观察和电化学极化实验,研究了Ce处理对75Cr1钢的洁净度、组织与耐蚀性能的影响。结果表明:Ce能有效去除钢中的O、S等杂质元素,随着Ce含量的增加,75Cr1钢中典型夹杂物从初始的Ca-Mg-Al-O + MnS + CaS + TiN转变为Ce2O2S和Ce2O2S-CeAlO3夹杂,而后转变为稀土硫化物夹杂;O、S含量降低到一定程度后,Ce与P和As等残余元素结合形成稀土磷化物和稀土砷化物夹杂;夹杂物的尺寸、数量呈现先减小后增加的趋势,形状从不规则形状转变为球状,当Ce过量时又转变为不规则形状。适量的Ce处理可以明显细化奥氏体晶粒并抑制其长大,还可以提高钢的耐蚀性能。添加质量分数为0.0195%Ce时,75Cr1钢的洁净度、组织细化和耐点蚀性能最佳。

关键词 Ce处理夹杂物特征O含量S含量细化晶粒耐点蚀性    
Abstract

Saw blades are always running under a high resonance, large lateral pressure, large tensile stress, and corrosive environment. Nonmetallic inclusions in steel break the continuity of the matrix and easily cause stress concentration and crack formation. Furthermore, the inclusions, especially MnS/CaS, cause the initiation of pitting corrosion. Rare-earth elements in steel can play the role in liquid steel purification, inclusion modification, and solid solution alloying. Rare-earth inclusions can act as the nucleation sites for the formation of the δ-Fe/γ-Fe phase during the solidification of molten steel, thus refining the solidification structure, and have relatively lower pitting sensitivity. In this study, the effect of Ce treatment on the cleanliness, microstructure, and corrosion resistance of 75Cr1 steel was investigated via inclusion characterization and in situ observation of the microstructure evolution as well as electrochemical polarization experiments. Results showed that Ce can effectively remove O, S, and other impurity elements in steel. With the increase in Ce content, the typical inclusions in 75Cr1 steel changed from the initial Ca-Mg-Al-O + MnS + CaS + TiN inclusions to Ce2O2S and Ce2O2S-CeAlO3 inclusions and then to rare-earth sulfide inclusions. After the oxygen and sulfur contents were reduced to a certain extent, Ce started to combine with residual elements such as P and As to form rare-earth phosphide and arsenide inclusions. The size and number of inclusions firstly decreased and then increased. Meanwhile, the morphology of the inclusions firstly changed from irregular to spherical and then changed to irregular again when excessive Ce was added. The addition of appropriate Ce can refine the austenite grains and inhibit their growth; moreover, the corrosion potential and pitting corrosion resistance of steel are improved and the self-corrosion currents decrease. The 0.0195%Ce-containing 75Cr1 steel showed the highest cleanliness, a refined microstructure, and enhanced pitting corrosion resistance.

Key wordsCe treatment    inclusions characteristics    oxygen content    sulfur content    grain refinement    pitting corrosion resistance
收稿日期: 2022-07-27     
ZTFLH:  TF769.9  
基金资助:国家自然科学基金项目(52004189);湖北省重点研发计划项目(2022BAA021)
通讯作者: 刘 昱,liuyu629@wust.edu.cn,主要从事钢的洁净化与均质化研究
Corresponding author: LIU Yu, associate professor, Tel: 18007135350, E-mail: liuyu629@wust.edu.cn
作者简介: 孟 泽,1997年生,男,硕士生
图1  高频感应炉示意图
图2  原位观察实验的升降温程序图
图3  钢中总O、S含量随Ce含量的变化
图4  钢中夹杂物尺寸和数量分布
图5  C1钢中夹杂物的典型形貌及元素分布
图6  C2钢中典型夹杂物的形貌和元素分布
EquationΔGθ / (J·mol-1)No.
[Ce]+[O]+1/2[S]=1/2Ce2O2S(s)-675700+165.50T(1)
[Ce]+3/2[O]=1/2Ce2O3(s)-714380+179.74T(2)
[Ce]+Al2O3(s)=CeAlO3(s)+[Al] -423900+247.30T(3)
[Ce]+[S]=CeS(s)-422100+120.38T(4)
[Ce]+3/2[S]=1/2Ce2S3(s)-536420+163.86T(5)
[Ce]+4/3[S]=1/3Ce3S4(s)-497670+146.30T(6)
表1  稀土夹杂物的标准生成Gibbs自由能[34]
图7  1600℃下钢液中O-S平衡曲线和Ce-Al平衡曲线
图8  C3钢中典型夹杂物的形貌和元素分布
图9  1600℃下钢液中Ce-S的平衡曲线
图10  C4和C5钢中典型夹杂物的形貌和元素分布
图11  1150℃下保温30 min时C1、C3和C5钢中显微组织的原位CLSM像和对应的晶界处理图像
图12  不同温度下75Cr1钢中的相分布
图13  在1150℃下不同保温时间下奥氏体晶粒平均尺寸
图14  C1、C3和C5钢的极化曲线
SampleEcorr / mVicorr / (A·cm-2)Epit1000 / mV
C1-10008.53 × 10-5-350
C3-9364.03 × 10-5-290
C5-9865.07 × 10-5-330
表2  C1、C3和C5钢在3.5%NaCl溶液中的电化学参数
1 Liu D, Song Y Q, Zhang X, et al. Effect of La on microstructure and mechanical properties of 75Cr1 saw blade steel [J]. Hot Work. Technol., 2021, 50(14): 51
1 刘 笛, 宋艳青, 张 鑫 等. La对75Cr1锯片用钢热轧板组织和力学性能的影响 [J]. 热加工工艺, 2021, 50(14): 51
2 Guan J, Wang L Q, Zhang C W, et al. Effects of non-metallic inclusions on the crack propagation in bearing steel [J]. Tribol. Int., 2017, 106: 123
3 Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study [J]. Acta Metall. Sin., 2020, 56: 1592
doi: 10.11900/0412.1961.2020.00141
3 朱 健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制 [J]. 金属学报, 2020, 56: 1592
4 Wang L M. Application prospects and behavior of RE in new generation high strength steels with superior toughness [J]. J. Chin. Rare Earth Soc., 2004, 22: 48
4 王龙妹. 稀土元素在新一代高强韧钢中的作用和应用前景 [J]. 中国稀土学报, 2004, 22: 48
5 Yan C L, Wang F M, Wei L J, et al. Improvement of lanthanum on impact toughness of 34CrNi3Mo steel containing Sn, Sb residual elements [J]. J. Univ. Sci. Technol. Beijing, 2004, 26: 277
5 严春莲, 王福明, 魏利娟 等. 残余元素锡、锑对34CrNi3Mo钢冲击韧性的影响及稀土镧的改善作用 [J]. 北京科技大学学报, 2004, 26: 277
6 Yang J C, Wang J, Ren L, et al. Effect of Ce on microstructure and impact properties of S32550 duplex stainless steel [J]. Iron Steel, 2020, 55(1): 86
6 杨吉春, 王 军, 任 磊 等. 铈对S32550双相不锈钢微观组织及冲击性能的影响 [J]. 钢铁, 2020, 55(1): 86
doi: 10.13228/j.boyuan.issn0449-749x.20190165
7 Zhou W J, Zhu J, Zhang Z H. Austenite grain growth behaviors of La-microalloyed H13 steel and its effect on mechanical properties [J]. Metall. Mater. Trans., 2020, 51A: 4662
8 Lu B, Chen F R, Zhi J G, et al. Enhanced welding properties of high strength steel via rare earth oxide metallurgy technology [J]. Acta Metall. Sin., 2020, 56: 1206
doi: 10.11900/0412.1961.2020.00052
8 陆 斌, 陈芙蓉, 智建国 等. 应用稀土氧化物冶金技术改善高强钢焊接性能 [J]. 金属学报, 2020, 56: 1206
9 Yang Q X, Liao B, Liu L G, et al. Mechanism of cracking resistance improved by rare earth oxide of hardfacing specimens of medium-high carbon steel [J]. J. Chin. Rare Earth Soc., 2006, 24: 721
9 杨庆祥, 廖 波, 刘利刚 等. 稀土氧化物提高中高碳钢堆焊试样抗开裂性机制的研究 [J]. 中国稀土学报, 2006, 24: 721
10 Ke W. China Corrosion Investigation Report [M]. Beijing: Chemical Industry Press, 2003: 55
10 柯 伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003: 55
11 Deyab M A. Electrochemical investigations on pitting corrosion inhibition of mild steel by provitamin B5 in circulating cooling water [J]. Electrochim. Acta, 2016, 202: 262
12 Frankel G S, Sridhar N. Understanding localized corrosion [J]. Mater. Today, 2008, 11: 38
13 Rodrigues C A D, Pagotto J F, Motheo A J, et al. The effect of titanium on pitting corrosion resistance of welded supermartensitic stainless steel [J]. Corros. Eng. Sci. Technol., 2017, 52: 141
14 Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes [J]. JOM, 2018, 70: 2513
15 Yang Z X, Kan B, Li J X, et al. Pitting initiation and propagation of X70 pipeline steel exposed to chloride-containing environments [J]. Materials, 2017, 10: 1076
16 Jin T Y, Cheng Y. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
17 Wang Y F, Cheng G X, Li Y. Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ and 3-D measuring microscope [J]. Corros. Sci., 2016, 111: 508
18 Suter T, Böhni H. A new microelectrochemical method to study pit initiation on stainless steels [J]. Electrochim. Acta, 1997, 42: 3275
19 Sun Y T, Li Y W, Wu W B, et al. Effect of inclusions on pitting corrosion of C70S6 non-quenched and tempered steel doped with Ca and Mg [J]. Acta Metall. Sin., 2022, 58: 895
doi: 10.11900/0412.1961.2021.00362
19 孙阳庭, 李一唯, 吴文博 等. Ca、Mg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响 [J]. 金属学报, 2022, 58: 895
doi: 10.11900/0412.1961.2021.00362
20 Zheng J C, Hu X J, Pan C, et al. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel [J]. Mater. Corros., 2018, 69: 572
21 Imashuku S, Wagatsuma K. Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd) [J]. Metall. Mater. Trans., 2020, 51B: 79
22 Liu X J, Yang J C, Ding H F, et al. Study on behavior of rare earth cerium modifying inclusions in clean steel [J]. Hot Work. Technol., 2016, 45(9): 92
22 刘香军, 杨吉春, 丁海峰 等. 洁净钢中稀土铈变质夹杂物行为研究 [J]. 热加工工艺, 2016, 45(9): 92
23 Gao S, Wang M, Guo J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel [J]. Steel Res. Int., 2019, 90: 1900194
24 Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
doi: 10.11900/0412.1961.2018.00079
24 黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253
25 Song M M, Song B, Xin W B, et al. Effects of rare earth addition on microstructure of C-Mn steel [J]. Ironmak. Steelmak., 2015, 42: 594
26 Li M, Li H Z, Wang J J, et al. Effect of Ce on the microstructure, high-temperature tensile properties, and fracture mode of strip casting non-oriented 6.5%Si electrical steel [J]. Acta Metall. Sin., 2022, 58: 637
doi: 10.11900/0412.1961.2021.00115
26 李 民, 李昊泽, 王继杰 等. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响 [J]. 金属学报, 2022, 58: 637
27 Yang Q X, Gao Y W, Liao B, et al. Discussion of inclusions as heterogeneous nuclei of primary austenite of medium-high carbon steel during hardfacing [J]. J. Chin. Rare Earths Soc., 2000, 18: 138
27 杨庆祥, 高聿为, 廖 波 等. 夹杂物在中高碳钢堆焊金属中成为初生奥氏体非均质形核核心的探讨 [J]. 中国稀土学报, 2000, 18: 138
28 Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
29 Nishimoto M, Muto I, Sugawara Y, et al. Micro-electrochemical properties of CeS inclusions in stainless steel and inhibiting effects of Ce3+ ions on pitting [J]. J. Electrochem. Soc., 2017, 164: C901
30 Nishimoto M, Muto I, Sugawara Y, et al. Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance [J]. Corros. Sci., 2021, 180: 109222
31 Liu H L. Effect of rare earth on microstructure and property of X80 pipeline Steel [D]. Shenyang: Northeastern University, 2011
31 刘宏亮. 稀土对X80管线钢组织和性能的影响 [D]. 沈阳: 东北大学, 2011
32 Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel [J]. Steel Res. Int., 2012, 83: 472
33 Liu Y, Zhang Z, Li G Q, et al. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting [J]. Steel Res. Int., 2017, 88: 1700058
34 Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
doi: 10.1038/srep46503 pmid: 28485376
35 Hino M, Ito K. Thermodynamic Data for Steelmaking [M]. Sendai, Japan: Tohuku University Press, 2010: 1
36 Huang Y, Cheng G G, Li S J, et al. Precipitation mechanism and thermal stability of primary carbide in Ce microalloyed H13 steel [J]. Acta Metall. Sin., 2019, 55: 1487
doi: 10.11900/0412.1961.2019.00147
36 黄 宇, 成国光, 李世健 等. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究 [J]. 金属学报, 2019, 55: 1487
37 Guo M X, Suito H. Dispersion of primary inclusions of Ce2O3 and CeS in Fe-0.20 mass%C-0.02 mass%P alloy [J]. ISIJ Int., 1999, 39: 678
38 Wang Y G, Liu C J. Agglomeration characteristics of various inclusions in Al-killed molten steel containing rare earth element [J]. Metall. Mater. Trans., 2020, 51B: 2585
39 Vahed A, Kay D A R. Thermodynamics of rare earths in steelmaking [J]. Metall. Trans., 1976, 7B: 375
40 Bao D H, Cheng G G, Huang Y, et al. Refinement of solidification structure of H13 steel by rare earth sulfide [J]. Steel Res. Int., 2022, 93: 2100304
41 Liu Y Q, Wang L J, Chou K C. Effects of cerium on resistance to pitting corrosion of spring steel used in fasteners of high-speed railway [J]. Steel Res. Int., 2014, 85: 1510
42 Cao Y X. Effect of rare earth Ce on the corrosion resistance and weldability of high-strength low-alloy steels [D]. Wuhan: Wuhan University of Science and Technology, 2021
42 曹羽鑫. 稀土Ce对低合金高强钢耐点蚀性能和焊接性能的影响 [D]. 武汉: 武汉科技大学, 2021
[1] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[2] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[3] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[4] 马跃 苏航 潘涛 余音宏 杨才福 张永权 彭云. 中高碳钢中复合延性夹杂物控制研究[J]. 金属学报, 2012, 48(11): 1321-1328.
[5] 舒玮 王学敏 李书瑞 贺信莱. 焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J]. 金属学报, 2011, 47(4): 435-441.
[6] 康志新 彭勇辉 桑静 简炜炜 赵海东 李元元. T型通道挤压变形Mg-1.5Mn-0.3Ce合金的超塑性和组织演变[J]. 金属学报, 2009, 45(9): 1117-1124.
[7] 敬和民; 吴欣强; 郑玉贵; 姚治铭; 柯伟 . Mo含量对不锈钢在环烷酸介质中腐蚀与中蚀的影响[J]. 金属学报, 2002, 38(10): 1067-1073 .