Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 681-690    DOI: 10.11900/0412.1961.2022.00264
  研究论文 本期目录 | 过刊浏览 |
电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能
曾立1, 王桂兰1, 张海鸥2(), 翟文正2, 张勇3, 张明波1
1 华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074
2 华中科技大学 数字制造装备与技术国家重点实验室 武汉 430074
3 中国航发北京航空材料研究院 北京 100095
Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing
ZENG Li1, WANG Guilan1, ZHANG Haiou2(), ZHAI Wenzheng2, ZHANG Yong3, ZHANG Mingbo1
1 State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
3 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
Li ZENG, Guilan WANG, Haiou ZHANG, Wenzheng ZHAI, Yong ZHANG, Mingbo ZHANG. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. Acta Metall Sin, 2024, 60(5): 681-690.

全文: PDF(4498 KB)   HTML
摘要: 

GH4169D合金作为一种新型的高力学性能和高稳定性的镍基高温合金,在用于制造高性能复杂结构零件方面具有巨大应用价值,但该合金在电弧增材制造中表现出柱状晶粗大、力学性能各向异性等问题。本工作采用电弧微铸锻复合增材制造(hybrid arc and micro-rolling additive manufacturing,HARAM)技术成形GH4169D高温合金试块,并制定多种热处理制度对所成形的试块进行热处理。运用OM、SEM、EBSD、EDS、XRD、TEM等手段以及室温拉伸实验对合金的微观组织和力学性能进行观测和分析,并与常规电弧熔丝增材制造(wire and arc additive manufacturing,WAAM)方法成形的GH4169D合金进行对比。结果表明,HARAM技术中同步轧制的“微锻”作用能有效地使合金原本粗大的柱状晶发生“破碎”。与常规WAAM方法相比,采用HARAM技术所成形合金的室温抗拉强度提高(X向提高48 MPa,Z向提高90 MPa),力学性能的各向异性得到有效抑制。均匀化+固溶+双时效热处理有效消除了HARAM技术成形合金中的Laves偏析相,并促进受“微锻”作用的合金组织发生再结晶,使晶粒比未热处理时更为细小均匀,合金的综合力学性能达到最优(抗拉强度和断后延伸率X向为1366 MPa和25.0%,Z向为1354 MPa和24.6%)。

关键词 增材制造电弧微铸锻GH4169D高温合金热处理显微组织力学性能    
Abstract

GH4169D is an age-strengthened nickel-based superalloy designed according to the improved GH4169 superalloy, which has become a remarkable candidate material for aero engines' hot-end components. However, large columnar grains and obvious anisotropy of mechanical properties often occur in this superalloy, which is fabricated by conventional wire and arc additive manufacturing (WAAM). To solve these problems, hybrid arc and micro-rolling additive manufacturing (HARAM) has been proposed. HARAM operates by combining WAAM with the rolling process. Herein, GH4169D superalloy samples were fabricated by WAAM and HARAM. Further, microstructures and mechanical properties of the samples under different heat treatments were investigated. Results show that with micro-rolling applied, large columnar grains became finer. In addition, the tensile strength of HARAM-ed GH4169D was significantly improved compared with WAAM-ed GH4169D (48 MPa in the X direction and 90 MPa in the Z direction), and the anisotropy of mechanical properties of HARAM-ed GH4169D was effectively eliminated. Homogenization plus solution plus double aging heat treatment effectively eliminated Laves segregation phase and induced the recrystallization of HARAM-ed GH4169D, leading to more finer and uniform grains than those without heat treatment, thereby, making the comprehensive properties optimal (the tensile strength and elongation were 1366 MPa and 25.0% in the X direction and 1354 MPa and 24.6% in the Z direction, respectively).

Key wordsadditive manufacturing    arc and micro-rolling    GH4169D superalloy    heat treatment    microstructure    mechanical property
收稿日期: 2022-05-31     
ZTFLH:  TG457.19  
基金资助:国家重点研发计划项目(2019YFB1311103)
通讯作者: 张海鸥,zholab@hust.edu.cn,主要从事金属零件增量制造和数字制造技术与装备研究
Corresponding author: ZHANG Haiou, professor, Tel: 13607104836, E-mail: zholab@hust.edu.cn
作者简介: 曾 立,男,1997年生,硕士
图1  电弧微铸锻复合增材制造(HARAM)技术示意图
图2  沉积扫描策略示意图
图3  拉伸试样尺寸
图4  电弧熔丝增材制造(WAAM)和HARAM工艺成形的未热处理态GH4169D合金试块宏观形貌和微观组织的OM像
图5  WAAM和HARAM工艺成形的未热处理态GH4169D合金的EBSD像
图6  HARAM工艺成形GH4169D合金热处理前后微观组织的OM像
图7  HARAM工艺成形GH4169D合金经固溶+双时效(SA)和均匀化+固溶+双时效(HSA)热处理后的EBSD像
图8  WAAM和HARAM工艺成形GH4169D合金经HSA热处理后微观组织的OM像
图9  HARAM工艺成形GH4169D合金热处理前后微观组织的SEM像和EDS元素分布图
图10  HARAM工艺成形GH4169D合金热处理前后的XRD谱
图11  HARAM工艺成形GH4169D合金HSA热处理前后微观组织的TEM像
SpecimenRm / MPaA / %
X directionZ directionX directionZ direction
WAAM-ed982 ± 1.2941 ± 3.320.0 ± 1.4326.4 ± 2.34
WAAM-ed, HSA1331 ± 1.51306 ± 24.320.8 ± 0.8525.9 ± 4.05
HARAM-ed1030 ± 14.01031 ± 26.022.3 ± 1.4524.8 ± 1.25
HARAM-ed, SA1164 ± 11.01284 ± 2.09.1 ± 1.2511.2 ± 1.00
HARAM-ed, HSA1366 ± 5.81354 ± 2.525.0 ± 3.1924.6 ± 2.52
表1  WAAM和 HARAM工艺成形GH4169D试样热处理前后的拉伸性能
图12  HARAM工艺成形GH4169D合金经SA和HSA热处理后室温拉伸试样断口形貌的SEM像
1 Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy[J]. Aeron. Manuf. Technol., 2018, 61(10): 49
1 王 迪, 钱泽宇, 窦文豪 等. 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术, 2018, 61(10): 49
2 Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. J. Alloys Compd., 2018, 767: 330
doi: 10.1016/j.jallcom.2018.07.087
3 Cedergren S, Olovsjö S, Sjöberg G, et al. The effects of grain size and feed rate on notch wear and burr formation in wrought alloy 718[J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1501
doi: 10.1007/s00170-012-4584-3
4 Wang M Q, Deng Q, Du J H, et al. Research progress of alloy ATI 718Plus in China[J]. Rare Met. Mater. Eng., 2016, 45: 3335
4 王民庆, 邓 群, 杜金辉 等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45: 3335
5 Xie J, Tian S G, Shang L J, et al. Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature[J]. Mater. Sci. Eng., 2014, A606: 304
6 Wang M Q, Du J H, Deng Q, et al. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Sci. Eng., 2015, A626: 382
7 Zhao W, Dong J X, Zhang M C, et al. High-temperature microstructure stability of GH4169, GH4169plus and GH4738 alloy[J]. Trans. Mater. Heat Treat., 2015, 36(S1): 1
7 赵 薇, 董建新, 张麦仓 等. GH4169、GH4169plus和GH4738高温合金组织稳定性[J]. 材料热处理学报, 2015, 36(S1): 1
8 Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China[J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
8 张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57: 1215
9 Song F Y, Zhang J, Guo H M, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. J. Mater. Eng., 2021, 49(1): 65
9 宋富阳, 张 剑, 郭会明 等. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65
doi: 10.11868/j.issn.1001-4381.2020.000396
10 Seidel A, Finaske T, Straubel A, et al. Additive manufacturing of powdery Ni-based superalloys Mar-M-247 and CM 247 LC in hybrid laser metal deposition[J]. Metall. Mater. Trans., 2018, 49A: 3812
11 Yuan Z W, Chang F C, Ma R, et al. Research progress of additive manufacturing of nickel-based superalloys[J]. Mater. Rep., 2022, 36: 206
11 袁战伟, 常逢春, 马 瑞 等. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36: 206
12 Lü Y H, Wang K B, Liu Y X, et al. The effect of heat treatment on the microstructure and mechanical property of Inconel 718 superalloy fabricated by plasma arc additive manufacturing[J]. Metall. Funct. Mater., 2018, 25(5): 46
12 吕耀辉, 王凯博, 刘玉欣 等. 热处理对等离子弧增材制造Inconel 718合金组织与性能的影响[J]. 金属功能材料, 2018, 25(5): 46
13 Jiang H L, Yao J K, Yin F L. Research status and application of wire arc additive manufacturing technology[J]. Hot Work. Technol., 2018, 47(18): 25
13 江宏亮, 姚巨坤, 殷凤良. 丝材电弧增材制造技术的研究现状与应用[J]. 热加工工艺, 2018, 47(18): 25
14 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeron. Manuf. Technol., 2018, 61(3): 74
14 李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74
15 Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Mater. Sci. Technol., 2018, 34: 895
doi: 10.1080/02670836.2018.1455012
16 Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad[J]. Aeros. Manuf. Technol., 2015, (2): 57
16 田彩兰, 陈济轮, 董 鹏 等. 国外电弧增材制造技术的研究现状及展望[J]. 航天制造技术, 2015, (2): 57
17 Seow C E, Coules H E, Wu G Y, et al. Wire + arc additively manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties[J]. Mater. Des., 2019, 183: 108157
doi: 10.1016/j.matdes.2019.108157
18 Zhang H O, Wang X P, Wang G L, et al. Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling[J]. Rapid Prototyping J., 2013, 19: 387
doi: 10.1108/RPJ-01-2012-0006
19 Wang G L, Fu Y H, Liang L Y, et al. New hybrid additive manufacturing method for forming high strength parts by weld-rolling[J]. Hot Work. Technol., 2015, 44(13): 24
19 王桂兰, 符友恒, 梁立业 等. 电弧微铸轧复合增材新方法制造高强度钢零件[J]. 热加工工艺, 2015, 44(13): 24
20 Zickler G A, Schnitzer R, Radis R, et al. Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™[J]. Mater. Sci. Eng., 2009, A523: 295
21 Zhang J B, Li J A, Peng Y Y, et al. Reviews on the study of microstructure and properties of ATI 718Plus superalloy[J]. Mater. Rep., 2022, 36(4): 149
21 仉建波, 李京桉, 彭远祎 等. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 149
22 Kumari G, Boehlert C, Sankaran S, et al. The effects of solutionizing temperature on the microstructure of Allvac 718Plus[J]. J. Mater. Eng. Perform., 2020, 29: 3523
doi: 10.1007/s11665-020-04687-z
23 Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Mater., 2019, 164: 413
doi: 10.1016/j.actamat.2018.10.032
24 Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process[J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2733
doi: 10.1007/s00170-016-9901-9
25 Ming X L, Chen J, Tan H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chin. J. Lasers, 2015, 42(4): 1
25 明宪良, 陈 静, 谭 华 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 1
26 Yang G Y, Yang P W, Liu N, et al. Microstructure and crystal orientation of pure tungsten fabricated by selective electron beam melting[J]. Rare Met. Mater. Eng., 2019, 48: 2580
26 杨广宇, 杨鹏伟, 刘 楠 等. 电子束选区熔化成形纯钨的显微组织与晶体取向[J]. 稀有金属材料与工程, 2019, 48: 2580
27 Hong C M, Dong J X, Zhang Y F, et al. A study on microstructural characteristics during hot processing of GH864 superalloy[J]. Rare Met. Mater. Eng., 2009, 38: 510
27 洪成淼, 董建新, 张玉峰 等. GH864合金热加工过程中组织特征研究[J]. 稀有金属材料与工程, 2009, 38: 510
28 Xie B C, Zhang B Y, Yu H, et al. Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy[J]. Mater. Sci. Eng., 2020, A784: 139334
29 Asala G, Khan A K, Andersson J, et al. Microstructural analyses of ATI 718Plus® produced by wire-arc additive manufacturing process[J]. Metall. Mater. Trans., 2017, 48A: 4211
30 Wang K B, Liu Y X, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. J. Alloys Compd., 2020, 819: 152936
doi: 10.1016/j.jallcom.2019.152936
31 Lv X D, Wen B, Du J H. Effects of heat treatment on microstructure and mechanical properties of selective laser melting IN718[J]. Rare Met. Mater. Eng., 2019, 48: 1386
32 Li Z G, Zhang L T, Sun N R, et al. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy[J]. Mater. Charact., 2014, 95: 299
doi: 10.1016/j.matchar.2014.07.013
33 Randle V, Owen G. Mechanisms of grain boundary engineering[J]. Acta Mater., 2006, 54: 1777
doi: 10.1016/j.actamat.2005.11.046
34 Viskari L, Cao Y, Norell M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2011, A528: 2570
35 Pan X L, Yu H Y, Tu G F, et al. Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2402
doi: 10.1016/S1003-6326(11)61027-3
36 Tang L T, Zhang H Y, Guo Q Y, et al. The precipitation of η phase during the solution treatments of Allvac 718Plus[J]. Mater. Charact., 2021, 176: 111142
doi: 10.1016/j.matchar.2021.111142
37 Oguntuase O, Ojo O A, Beddoes J. Influence of post-deposition heat treatments on the microstructure and mechanical properties of wire-arc additively manufactured ATI 718Plus[J]. Metall. Mater. Trans., 2020, 51A: 1846
38 Wang M Q, Deng Q, Du J H, et al. The effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Trans., 2015, 56: 635
doi: 10.2320/matertrans.M2014378
39 Hosseini S A, Abbasi S M, Madar K Z, et al. The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus[J]. Mater. Chem. Phys., 2018, 211: 302
doi: 10.1016/j.matchemphys.2018.01.076
40 Ahmadi M R, Povoden-Karadeniz E, Whitmore L, et al. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation[J]. Mater. Sci. Eng., 2014, A608: 114
[1] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[2] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[3] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[4] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[5] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[6] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[7] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[8] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[9] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[10] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[11] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[12] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[13] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[14] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[15] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.